This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322927 #18 Sep 08 2022 08:46:23 %S A322927 0,1,5,51,55,551,555,5551,5555,55551,55555,555551,555555,5555551, %T A322927 5555555,55555551,55555555,555555551,555555555,5555555551,5555555555, %U A322927 55555555551,55555555555,555555555551,555555555555,5555555555551,5555555555555,55555555555551 %N A322927 Expansion of x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)). %H A322927 Muniru A Asiru, <a href="/A322927/b322927.txt">Table of n, a(n) for n = 0..1000</a> %H A322927 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,11,0,-10). %F A322927 G.f.: x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)). %F A322927 a(n) = 11*a(n-2) - 10*a(n-4). %F A322927 a(n) = 5*(10^n - 1)/9 for n even; a(n) = (5*10^n - 41)/9 otherwise. %p A322927 seq(coeff(series(x*(1+5*x+40*x^2)/((1-x^2)*(1-10*x^2)),x,n+1), x, n), n = 0 .. 30); # _Muniru A Asiru_, Mar 17 2019 %t A322927 CoefficientList[Series[x (1 + 5 x + 40 x^2) / (10 x^4 - 11 x^2 + 1), {x, 0, 25}], x] %o A322927 (Magma) I:=[0, 1, 5, 51]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]]; %Y A322927 Bisections give: A002279 (even part), A173804 (odd part). %K A322927 nonn,easy %O A322927 0,3 %A A322927 _Vincenzo Librandi_, Mar 17 2019