This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322931 #17 Aug 14 2019 08:33:01 %S A322931 3,7,5,0,7,3,0,1,7,1,7,6,4,2,3,6,7,7,7,0,3,1,2,0,1,7,2,6,1,2,5,4,1,1, %T A322931 1,2,3,5,5,2,3,5,4,7,3,6,0,0,3,4,7,1,3,3,6,4,6,0,0,4,4,6,0,5,6,4,1,5, %U A322931 5,6,0,0,0,6,2,6,1,0,7,1,6,0,0,4,6,5,0,7,0,1,3,7,3,7,0,0,2,0,6,1 %N A322931 Digits of the 8-adic integer 3^(1/3). %C A322931 The octal version of A225404. %H A322931 Seiichi Manyama, <a href="/A322931/b322931.txt">Table of n, a(n) for n = 0..10000</a> %H A322931 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A322931 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 5 * (b(n-1)^3 - 3) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - _Seiichi Manyama_, Aug 14 2019 %e A322931 4671710370573^3 == 3 (mod 8^13) in octal. %o A322931 (PARI) N=100; Vecrev(digits(lift((3+O(2^(3*N)))^(1/3)), 8), N) \\ _Seiichi Manyama_, Aug 14 2019 %o A322931 (Ruby) %o A322931 def A322931(n) %o A322931 ary = [3] %o A322931 a = 3 %o A322931 n.times{|i| %o A322931 b = (a + 5 * (a ** 3 - 3)) % (8 ** (i + 2)) %o A322931 ary << (b - a) / (8 ** (i + 1)) %o A322931 a = b %o A322931 } %o A322931 ary %o A322931 end %o A322931 p A322931(100) # _Seiichi Manyama_, Aug 14 2019 %Y A322931 Cf. A225404 (decimal version), A290563, A309698, A322932, A322933. %K A322931 nonn,base,easy %O A322931 0,1 %A A322931 _Patrick A. Thomas_, Dec 31 2018