This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322932 #15 Aug 14 2019 08:33:21 %S A322932 5,3,1,7,4,4,0,2,3,3,6,0,6,7,6,7,5,4,0,5,3,2,2,2,4,6,2,6,1,0,6,2,7,4, %T A322932 3,3,7,4,3,7,5,6,4,5,1,3,3,0,1,7,4,4,7,0,7,5,3,2,1,5,1,5,6,1,1,0,1,6, %U A322932 1,4,7,4,0,1,1,5,6,0,6,3,5,0,3,4,0,3,5,1,3,5,3,4,0,3,4,7,4,2,6,0 %N A322932 Digits of the 8-adic integer 5^(1/3). %H A322932 Seiichi Manyama, <a href="/A322932/b322932.txt">Table of n, a(n) for n = 0..10000</a> %H A322932 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>. %F A322932 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 5, b(n) = b(n-1) + 5 * (b(n-1)^3 - 5) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - _Seiichi Manyama_, Aug 14 2019 %e A322932 20447135^3 == 5 (mod 8^8) in octal. %o A322932 (PARI) N=100; Vecrev(digits(lift((5+O(2^(3*N)))^(1/3)), 8), N) \\ _Seiichi Manyama_, Aug 14 2019 %o A322932 (Ruby) %o A322932 def A322932(n) %o A322932 ary = [5] %o A322932 a = 5 %o A322932 n.times{|i| %o A322932 b = (a + 5 * (a ** 3 - 5)) % (8 ** (i + 2)) %o A322932 ary << (b - a) / (8 ** (i + 1)) %o A322932 a = b %o A322932 } %o A322932 ary %o A322932 end %o A322932 p A322932(100) # _Seiichi Manyama_, Aug 14 2019 %Y A322932 Cf. A322931, A322933. %K A322932 nonn,base,easy %O A322932 0,1 %A A322932 _Patrick A. Thomas_, Dec 31 2018