A322936 Triangular array in which the n-th row lists the numbers strongly prime to n (in ascending order). For the empty rows n = 2, 3, 4 and 6 we set by convention 0.
1, 0, 0, 0, 3, 0, 4, 5, 3, 5, 5, 7, 7, 3, 4, 6, 7, 8, 9, 5, 7, 5, 7, 8, 9, 10, 11, 3, 5, 9, 11, 4, 8, 11, 13, 7, 9, 11, 13, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 5, 7, 11, 13, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 3, 7, 9, 11, 13, 17, 8, 11, 13, 16, 17, 19
Offset: 1
Examples
The length of row n is A181830(n) = phi(n) - tau(n-1). The triangular array starts: [1] {1} [2] {} [3] {} [4] {} [5] {3} [6] {} [7] {4, 5} [8] {3, 5} [9] {5, 7} [11] {3, 4, 6, 7, 8, 9} [12] {5, 7} [10] {7} [13] {5, 7, 8, 9, 10, 11} [14] {3, 5, 9, 11} [15] {4, 8, 11, 13} [16] {7, 9, 11, 13} [17] {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15} [18] {5, 7, 11, 13} [19] {4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17} [20] {3, 7, 9, 11, 13, 17}
Links
- Peter Luschny, Strong Coprimality
Programs
-
Maple
StrongCoprimes := n -> select(k -> igcd(k, n)=1, {$1..n}) minus numtheory:-divisors(n-1): A322936row:= proc(n) if n in {2, 3, 4, 6} then return 0 else op(StrongCoprimes(n)) fi end: seq(A322936row(n), n=1..20);
-
Mathematica
Table[If[n == 1, {1}, Select[Range[2, n], And[GCD[#, n] == 1, Mod[n - 1, #] != 0] &] /. {} -> {0}], {n, 21}] // Flatten (* Michael De Vlieger, Apr 01 2019 *)
-
Sage
def primeto(n): return [p for p in range(n) if gcd(p, n) == 1] def strongly_primeto(n): return [p for p in set(primeto(n)) - set((n-1).divisors())] def A322936row(n): if n == 1: return [1] if n in [2, 3, 4, 6]: return [0] return sorted(strongly_primeto(n)) for n in (1..21): print(A322936row(n))
Comments