A322937 Triangular array in which the n-th row lists the primes strongly prime to n (in ascending order). For the empty rows n = 1, 2, 3, 4 and 6 we set by convention 0.
0, 0, 0, 0, 3, 0, 5, 3, 5, 5, 7, 7, 3, 7, 5, 7, 5, 7, 11, 3, 5, 11, 11, 13, 7, 11, 13, 3, 5, 7, 11, 13, 5, 7, 11, 13, 5, 7, 11, 13, 17, 3, 7, 11, 13, 17, 11, 13, 17, 19, 5, 13, 17, 19, 3, 5, 7, 13, 17, 19, 5, 7, 11, 13, 17, 19, 7, 11, 13, 17, 19, 23
Offset: 1
Examples
The length of row n is A181834(n). The triangular array starts: [1] {} [2] {} [3] {} [4] {} [5] {3} [6] {} [7] {5} [8] {3, 5} [9] {5, 7} [10] {7} [11] {3, 7} [12] {5, 7} [13] {5, 7, 11} [14] {3, 5, 11} [15] {11, 13} [16] {7, 11, 13} [17] {3, 5, 7, 11, 13} [18] {5, 7, 11, 13} [19] {5, 7, 11, 13, 17} [20] {3, 7, 11, 13, 17}
Links
- Peter Luschny, Strong Coprimality
Programs
-
Maple
Primes := n -> select(isprime, {$1..n}): StrongCoprimes := n -> select(k->igcd(k, n)=1, {$1..n}) minus numtheory:-divisors(n-1): StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n): A322937row := proc(n) if n in {1, 2, 3, 4, 6} then return 0 else op(StrongCoprimePrimes(n)) fi end: seq(A322937row(n), n=1..25);
-
Mathematica
Table[Select[Prime@ Range@ PrimePi@ n, And[GCD[#, n] == 1, Mod[n - 1, #] != 0] &] /. {} -> {0}, {n, 25}] // Flatten (* Michael De Vlieger, Apr 01 2019 *)
-
Sage
def primes_primeto(n): return [p for p in prime_range(n) if gcd(p, n) == 1] def primes_strongly_primeto(n): return [p for p in set(primes_primeto(n)) - set((n-1).divisors())] def A322937row(n): if n in [1, 2, 3, 4, 6]: return [0] return sorted(primes_strongly_primeto(n)) for n in (1..25): print(A322937row(n))
Comments