A322941 Coefficients of orthogonal polynomials p(n, x) where p(n, 0) is A026150 with 1 prepended. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 1, 2, 1, 4, 7, 4, 1, 10, 22, 17, 6, 1, 28, 68, 64, 31, 8, 1, 76, 208, 230, 138, 49, 10, 1, 208, 628, 796, 568, 252, 71, 12, 1, 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1, 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1, 4240, 16480, 28608, 29712, 20676, 10160, 3598, 914, 161, 18, 1
Offset: 0
Examples
The first few polynomials are: [0] p(0, x) = 1; [1] p(1, x) = x + 1; [2] p(2, x) = x^2 + 2*x + 1; [3] p(3, x) = x^3 + 4*x^2 + 7*x + 4; [4] p(4, x) = x^4 + 6*x^3 + 17*x^2 + 22*x + 10; [5] p(5, x) = x^5 + 8*x^4 + 31*x^3 + 64*x^2 + 68*x + 28; [6] p(6, x) = x^6 + 10*x^5 + 49*x^4 + 138*x^3 + 230*x^2 + 208*x + 76; The triangle starts: [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 4, 7, 4, 1; [4] 10, 22, 17, 6, 1; [5] 28, 68, 64, 31, 8, 1; [6] 76, 208, 230, 138, 49, 10, 1; [7] 208, 628, 796, 568, 252, 71, 12, 1; [8] 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1; [9] 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1;
Programs
-
Maple
p := proc(n) option remember; `if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+2)*p(n-1) + 2*p(n-2)); sort(expand(%)) end: seq(print(p(n)), n=0..11); # Computes the polynomials. seq(seq(coeff(p(n), x, k), k=0..n), n=0..10);
Formula
p(n, x) = (x+2)*p(n-1, x) + 2*p(n-2, x) for n >= 3.
T(n, k) = [x^k] p(n, x).