cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322942 Jacobsthal triangle, coefficients of orthogonal polynomials J(n, x) where J(n, 0) are the Jacobsthal numbers (A001045 with a(0) = 1). Triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A322942 #30 Sep 21 2023 01:46:30
%S A322942 1,1,1,1,2,1,3,5,3,1,5,12,10,4,1,11,27,28,16,5,1,21,62,75,52,23,6,1,
%T A322942 43,137,193,159,85,31,7,1,85,304,480,456,290,128,40,8,1,171,663,1170,
%U A322942 1254,916,480,182,50,9,1,341,1442,2793,3336,2750,1652,742,248,61,10,1
%N A322942 Jacobsthal triangle, coefficients of orthogonal polynomials J(n, x) where J(n, 0) are the Jacobsthal numbers (A001045 with a(0) = 1). Triangle read by rows, T(n, k) for 0 <= k <= n.
%C A322942 The name 'Jacobsthal triangle' used here is not standard.
%H A322942 G. C. Greubel, <a href="/A322942/b322942.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A322942 J(n, x) = (x+1)*J(n-1, x) + 2*J(n-2, x) for n >= 3.
%F A322942 T(n, k) = [x^k] J(n, x).
%F A322942 Equals the Riordan square (cf. A321620) generated by (2*x^2-1)/((x + 1)*(2*x - 1)).
%F A322942 Sum_{k=0..n} T(n, k) = A152035(n).
%F A322942 Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
%F A322942 From _G. C. Greubel_, Sep 20 2023: (Start)
%F A322942 T(n, k) = [x^k]( [n=0] + (i*sqrt(2))^n*(ChebyshevU(n, (x+1)/(2*sqrt(2)*i)) + ChebyshevU(n-2, (x+1)/(2*sqrt(2)*i))) ).
%F A322942 G.f.: (1 - 2*t^2)/(1 - (x+1)*t - 2*t^2).
%F A322942 Sum_{k=0..floor(n/2)} T(n-k, k) = (2/3)*[n=0] + A006138(n-1).
%F A322942 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = 2*[n=0] + Fibonacci(n-2). (End)
%e A322942 The first few polynomials are:
%e A322942   J(0, x) = 1;
%e A322942   J(1, x) = x + 1;
%e A322942   J(2, x) = x^2 + 2*x + 1;
%e A322942   J(3, x) = x^3 + 3*x^2 +  5*x + 3;
%e A322942   J(4, x) = x^4 + 4*x^3 + 10*x^2 + 12*x + 5;
%e A322942   J(5, x) = x^5 + 5*x^4 + 16*x^3 + 28*x^2 + 27*x + 11;
%e A322942   J(6, x) = x^6 + 6*x^5 + 23*x^4 + 52*x^3 + 75*x^2 + 62*x + 21;
%e A322942 The triangle starts:
%e A322942   [0]   1;
%e A322942   [1]   1,   1;
%e A322942   [2]   1,   2,    1;
%e A322942   [3]   3,   5,    3,    1;
%e A322942   [4]   5,  12,   10,    4,   1;
%e A322942   [5]  11,  27,   28,   16,   5,   1;
%e A322942   [6]  21,  62,   75,   52,  23,   6,   1;
%e A322942   [7]  43, 137,  193,  159,  85,  31,   7,  1;
%e A322942   [8]  85, 304,  480,  456, 290, 128,  40,  8, 1;
%e A322942   [9] 171, 663, 1170, 1254, 916, 480, 182, 50, 9, 1;
%p A322942 J := proc(n) option remember;
%p A322942 `if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+1)*J(n-1) + 2*J(n-2));
%p A322942 sort(expand(%)) end: seq(print(J(n)), n=0..11); # Computes the polynomials.
%p A322942 seq(seq(coeff(J(n), x, k), k=0..n), n=0..11);
%t A322942 J[n_, x_]:= J[n, x]= If[n<3, (x+1)^n, (x+1)*J[n-1, x] + 2*J[n-2, x]];
%t A322942 T[n_, k_]:= Coefficient[J[n, x], x, k];
%t A322942 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _Jean-François Alcover_, Jun 17 2019 *)
%t A322942 (* Second program *)
%t A322942 A322942[n_, k_]:= Coefficient[Series[Boole[n==0] + (I*Sqrt[2])^n*(ChebyshevU[n, (x+1)/(2*Sqrt[2]*I)] + ChebyshevU[n-2, (x+ 1)/(2*Sqrt[2]*I)]), {x,0,50}], x, k];
%t A322942 Table[A322942[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 20 2023 *)
%o A322942 (Sage) # use[riordan_square from A321620]
%o A322942 riordan_square((2*x^2 - 1)/((x + 1)*(2*x - 1)), 9)
%o A322942 (Magma)
%o A322942 R<x>:=PowerSeriesRing(Rationals(), 30);
%o A322942 g:= func< n,x | (&+[Binomial(n-k,k)*2^k*(x+1)^(n-2*k): k in [0..Floor(n/2)]]) >;
%o A322942 f:= func< n,x | n le 1 select (x+1)^n else g(n,x) - 2*g(n-2,x) >;
%o A322942 A322942:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
%o A322942 [A322942(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 20 2023
%Y A322942 Row sums are A152035, alternating row sums are A000007, values at x=1/2 are A323232, values at x=0 (first column) are A152046.
%Y A322942 Cf. A000045, A001045, A006138, A321620.
%K A322942 nonn,tabl
%O A322942 0,5
%A A322942 _Peter Luschny_, Jan 03 2019