cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322944 Coefficients of a family of orthogonal polynomials. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 6, 1, 6, 38, 15, 1, 24, 272, 188, 28, 1, 120, 2200, 2340, 580, 45, 1, 720, 19920, 30280, 11040, 1390, 66, 1, 5040, 199920, 413560, 206920, 37450, 2842, 91, 1, 40320, 2204160, 5989760, 3931200, 955920, 102816, 5208, 120, 1
Offset: 0

Views

Author

Peter Luschny, Jan 02 2019

Keywords

Comments

The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x+r(n))*p(n-1, x) - s(n)*p(n-2, x) + t(n)*p(n-3, x) - u(n)*p(n-4, x). For the details see the Maple program.
We conjecture that the polynomials have only negative and simple real roots.

Examples

			Triangle starts:
[0]    1;
[1]    1,      1;
[2]    2,      6,      1;
[3]    6,     38,     15,      1;
[4]   24,    272,    188,     28,     1;
[5]  120,   2200,   2340,    580,    45,    1;
[6]  720,  19920,  30280,  11040,  1390,   66,  1;
[7] 5040, 199920, 413560, 206920, 37450, 2842, 91, 1;
Production matrix starts:
   1;
   1,    1;
   3,    5,    1;
   6,   18,    9,    1;
   6,   42,   45,   13,    1;
   0,   48,  132,   84,   17,    1;
   0,    0,  180,  300,  135,   21,    1;
   0,    0,    0,  480,  570,  198,   25,    1;
		

Crossrefs

p(n, 1) = A322943(n) (row sums); p(n, 0) = n! = A000142(n).
A321966 (m=2), this sequence (m=3).
Cf. A321620.

Programs

  • Maple
    P := proc(n) option remember; local a, b, c, d;
    a := n -> 4*n-3; b := n -> 3*(n-1)*(2*n-3);
    c := n -> (n-1)*(n-2)*(4*n-9); d := n -> (n-2)*(n-1)*(n-3)^2;
    if n = 0 then return 1 fi;
    if n = 1 then return x + 1 fi;
    if n = 2 then return x^2 + 6*x + 2 fi;
    if n = 3 then return x^3 + 15*x^2 + 38*x + 6 fi;
    expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3) - d(n)*P(n-4)) end:
    seq(print(P(n)), n=0..9); # Computes the polynomials.
  • Mathematica
    a[n_] := 4n - 3;
    b[n_] := 3(n - 1)(2n - 3);
    c[n_] := (n - 1)(n - 2)(4n - 9);
    d[n_] := (n - 2)(n - 1)(n - 3)^2;
    P[n_] := P[n] = Switch[n, 0, 1, 1, x + 1, 2, x^2 + 6x + 2, 3, x^3 + 15x^2 + 38x + 6, _, Expand[(x + a[n]) P[n - 1] - b[n] P[n - 2] + c[n] P[n - 3] - d[n] P[n - 4]]];
    Table[CoefficientList[P[n], x], {n, 0, 9}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
  • Sage
    # uses[riordan_square from A321620]
    R = riordan_square((1 - 3*x)^(-1/3), 9, True).inverse()
    for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])

Formula

Let R be the inverse of the Riordan square [see A321620] of (1 - 3*x)^(-1/3) then T(n, k) = (-1)^(n-k)*R(n, k).