This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322949 #18 Feb 16 2025 08:33:57 %S A322949 1,3,6,9,20,22,27,32,72,97,99,104,107,120,140,142,151,180,304,305,342, %T A322949 440,489,521,635,665,673,767,876,1040,1313,1359,1764,2032,2224,2280, %U A322949 2783,2832,2875,5256,8225,10297,11124,12124,17552,18592,24435,30704,37467 %N A322949 Numbers k such that 315*2^k+1 is prime. %H A322949 Jeppe Stig Nielsen, <a href="/A322949/b322949.txt">Table of n, a(n) for n = 1..77</a> (terms n = 1..74 from Robert Price) %H A322949 Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a> %H A322949 Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1a.html">List of primes k.2^n + 1 for 300 < k < 600</a> %H A322949 Y. Gallot, <a href="http://www.utm.edu/research/primes/programs/gallot/index.html">Proth.exe: Windows Program for Finding Large Primes</a> %H A322949 Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a> %H A322949 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ProthPrime.html">Proth Prime</a> %H A322949 <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a> %t A322949 Select[Range[1000], PrimeQ[315*2^# + 1] &] (* _Robert Price_, Dec 31 2018 *) %Y A322949 Cf. A002255, A050527. %K A322949 nonn,hard %O A322949 1,2 %A A322949 _Robert Price_, Dec 31 2018