This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322952 #11 Feb 16 2025 08:33:57 %S A322952 1,5,32,68,109,128,133,212,241,653,776,1339,1787,2659,6388,6547,8365, %T A322952 16699,62861,64795,83227,195376,278875,442480,542876,730321,1168576, %U A322952 1257859,1629307,4715725 %N A322952 Numbers k such that 321*2^k+1 is prime. %H A322952 Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a> %H A322952 Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1a.html">List of primes k.2^n + 1 for 300 < k < 600</a> %H A322952 Y. Gallot, <a href="http://www.utm.edu/research/primes/programs/gallot/index.html">Proth.exe: Windows Program for Finding Large Primes</a> %H A322952 Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a> %H A322952 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ProthPrime.html">Proth Prime</a> %H A322952 <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a> %p A322952 select(n->isprime(321*2^n+1),[$1..1000]); # _Muniru A Asiru_, Dec 31 2018 %t A322952 Select[Range[1000], PrimeQ[321*2^# + 1] &] (* _Robert Price_, Dec 31 2018 *) %Y A322952 Cf. A002255, A050527. %K A322952 nonn,more,hard %O A322952 1,2 %A A322952 _Robert Price_, Dec 31 2018 %E A322952 a(30) from _Jeppe Stig Nielsen_, Dec 20 2024