This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322960 #10 Feb 16 2025 08:33:57 %S A322960 19,23,29,173,263,295,659,803,1075,1087,1129,1189,3173,4519,16277, %T A322960 44425,67069,103789,151319,189379,323767,356029,409429,528439,1335337, %U A322960 3266237 %N A322960 Numbers k such that 335*2^k+1 is prime. %H A322960 Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a> %H A322960 Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1a.html">List of primes k.2^n + 1 for 300 < k < 600</a> %H A322960 Y. Gallot, <a href="http://www.utm.edu/research/primes/programs/gallot/index.html">Proth.exe: Windows Program for Finding Large Primes</a> %H A322960 Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a> %H A322960 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ProthPrime.html">Proth Prime</a> %H A322960 <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a> %p A322960 select(n->isprime(335*2^n+1),[$1..1000]); # _Muniru A Asiru_, Dec 31 2018 %t A322960 Select[Range[1000], PrimeQ[335*2^# + 1] &] (* _Robert Price_, Dec 31 2018 *) %Y A322960 Cf. A002255, A050527. %K A322960 nonn,more,hard %O A322960 1,1 %A A322960 _Robert Price_, Dec 31 2018 %E A322960 a(26) from _Jeppe Stig Nielsen_, Dec 20 2024