cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322970 Coefficient triangle of polynomials recursively defined by P(n,x) = (n+1)*(n+1)! + x*Sum_{k=1..n} k^2*n!/(n+1-k)!*P(n-k,x) with P(0,x) = 1.

Original entry on oeis.org

1, 1, 4, 1, 12, 18, 1, 24, 120, 96, 1, 40, 420, 1200, 600, 1, 60, 1080, 6720, 12600, 4320, 1, 84, 2310, 25200, 105840, 141120, 35280, 1, 112, 4368, 73920, 554400, 1693440, 1693440, 322560, 1, 144, 7560, 183456, 2162160, 11975040, 27941760, 21772800, 3265920
Offset: 0

Views

Author

Markus Neuhauser, Jan 01 2019

Keywords

Examples

			1;
1,  4;
1,  12,   18;
1,  24,  120,     96;
1,  40,  420,   1200,     600;
1,  60, 1080,   6720,   12600,     4320;
1,  84, 2310,  25200,  105840,   141120,    35280;
1, 112, 4368,  73920,  554400,  1693440,  1693440,   322560;
1, 144, 7560, 183456, 2162160, 11975040, 27941760, 21772800, 3265920
		

Crossrefs

Cf. A089231 (polynomials satisfy a similar recurrence relation with k instead of k^2 and (n+1)! instead of (n+1)*(n+1)! (proved)), A001563 (right diagonal).

Programs

  • Maple
    for n from 0 to nn do for k from 0 to n do printf("%g, ",(n+1)!*binomial(2*n+1-k,2*(n-k)+1)/(n-k+1)!); end do; printf("\n"); end do;
  • PARI
    tabl = (nn)->for(n=0,nn,for(k=0,n,print1((n+1)!*binomial(2*n+1-k,2*(n-k)+1)/(n-k+1)!,", "););print();)

Formula

A(n,k) = (n+1)!*(n+1+k)!/((k+1)!*(2k+1)!*(n-k)!) (proved);
The rows correspond to the polynomials:
P(0,x) = 1;
P(1,x) = x + 4;
P(2,x) = x^2 + 12*x + 18;
P(3,x) = x^3 + 24*x^2 + 120*x + 96;
...
They satisfy the recurrence relation P(n+1,x) = (x+3*n+3)*P(n,x) + (n+1)*(x-3*n)*P(n-1,x) + (n+1)*n*(n-1)*P(n-2,x) with P(0,x) = 1, P(1,x) = (x+3)*P(0,x) + 1, P(2,x) = (x+6)*P(1,x) + 2*(x-3)*P(0,x) (proved).