cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323013 Form of Zorach additive triangle T(n,k) (see A035312) where each number is sum of west and northwest numbers, with the additional condition that the first element T(n,1) is a Fibonacci number.

This page as a plain text file.
%I A323013 #14 Mar 18 2025 07:23:50
%S A323013 1,2,3,5,7,10,8,13,20,30,21,29,42,62,92,34,55,84,126,188,280,89,123,
%T A323013 178,262,388,576,856,144,233,356,534,796,1184,1760,2616,377,521,754,
%U A323013 1110,1644,2440,3624,5384,8000,610,987,1508,2262,3372,5016,7456,11080,16464,24464
%N A323013 Form of Zorach additive triangle T(n,k) (see A035312) where each number is sum of west and northwest numbers, with the additional condition that the first element T(n,1) is a Fibonacci number.
%C A323013 Conjecture: Let F(i) be the i-th Fibonacci number. Each number of T(n, k), k = 1, 2, 3 is the difference between two Fibonacci numbers F(i) - F(j) for some i, j, where F(i) is the smallest Fibonacci number greater than T(n, k). The case T(n, 1) is trivial. Examples: 10 = 13 - 3, 29 = 34 - 5, 20 = 21 - 1, 42 = 55 - 13, 84 = 89 - 5, ...
%C A323013 We observe interesting properties:
%C A323013 T(n,1) = A117647(n) = 1, 2, 5, 8, 21, ... where n = 1, 2, ...
%C A323013 T(2n,2) = A033887(n) = 3, 13, 55, ... (Fibonacci(3n+1)), and T(2n+1,2) = A048876(n) = 7, 29, 123, ... (Generalized Pell equation with second term of 7) where n = 1, 2, ...
%C A323013 T(3n,3) = 10, 84, 754, 6388,... If n = 2m - 1, T(6m - 3, 3) = F(9m - 2) - F(9m - 5) and if n = 2m, T(6m, 3) =  F(9m + 2) - F(9m - 4).
%C A323013 T(3n+1,3) = 20, 178, 1508, 13530, ... If n = 2m - 1, T(6m - 2, 3) = F(9m - 1) - F(9m - 7) and if n = 2m, T(6m+1, 3) =  F(9m + 4) - F(9m + 1).
%C A323013 T(3n+2,3) = 42, 356, 3194, 27060, ... If n = 2m - 1, T(6m - 1, 3) = F(9m + 1) - F(9m - 2) and if n = 2m, T(6m + 2, 3) =  F(9m + 5) - F(9m - 1).
%C A323013 Other property:
%C A323013 T(2m, 1) + T(2m, 2) = T(2m +1, 1) with T(2m, 1)= F(3m), T(2m, 2) = F(3m + 1) and T(2m + 1, 1) = F(3m + 2).
%C A323013 T(2m + 1, 1) + T(2m + 1, 2) = F(3m + 4) - F(3m - 1).
%e A323013 The start of the sequence as a triangular array T(n, k) read by rows:
%e A323013    1;
%e A323013    2,   3;
%e A323013    5,   7,  10;
%e A323013    8,  13,  20,   30;
%e A323013   21,  29,  42,   62,   92;
%e A323013   34,  55,  84,  126,  188,  280;
%e A323013   ...
%p A323013 with(combinat,fibonacci):
%p A323013 lst:={1}:lst2:=lst:
%p A323013 for n from 2 to 15 do :
%p A323013 lst1:={}:ii:=0:
%p A323013   for j from 1 to 1000 while(ii=0) do:
%p A323013      i:=fibonacci(j):
%p A323013      if {i} intersect lst2 = {} and {i+lst[1]} intersect lst2 = {}
%p A323013       then
%p A323013       lst1:=lst1 union {i}:ii:=1:
%p A323013       else
%p A323013      fi:
%p A323013    od:
%p A323013     for k from 1 to n-1 do:
%p A323013       lst1:=lst1 union {lst1[k]+lst[k]}:
%p A323013     od:
%p A323013     lst:=lst1:lst2:=lst2 union lst:
%p A323013     print(lst1):
%p A323013    od:
%Y A323013 Cf. A000045, A002878, A033887, A035312, A036561, A117647.
%K A323013 nonn,tabl
%O A323013 1,2
%A A323013 _Michel Lagneau_, Jan 02 2019