This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323018 #17 Jan 23 2019 09:33:05 %S A323018 1,1,1,2,2,1,2,2,1,1,2,2,1,2,1,2,2,1,2,1,1,2,2,1,2,2,2,1,2,2,1,2,1,2, %T A323018 1,1,2,2,1,2,2,1,2,2,1,2,2,1,2,1,2,1,1,1,1,2,2,1,1,2,2,2,1,2,2,1,2,2, %U A323018 1,2,2,2,1,2,2,2,1,1 %N A323018 T(n,k) = A321479(n,k)/A321478(n,k), 0 <= k <= n - 1. %C A323018 For Lucas sequences, say, rows in A316269, we are mainly concerned about the periods, ranks and the ratios of the periods to the ranks of them modulo a given integer n. The period of {A316269(k,m) modulo m} is given as A321479(n,k), and the rank, which is defined as the smallest l > 0 such that n divides A316269(k,l), is given as A321478(n,k). T(n,k) is their ratio, which is the multiplicative order of A316269(k, A321478(n,k)+1) modulo n. %C A323018 T(n,k) has value 1 or 2. This is because A316269(k,m+1)^2 == 1 (mod A316269(k,m)). See A172236 for some further properties. %C A323018 It seems that the n-th row contains more 2's than 1's unless n is a power of 2, in which case the numbers of 1's and 2's are always the same if n >= 4. %e A323018 Table begins %e A323018 1, %e A323018 1, 1, %e A323018 2, 2, 1, %e A323018 2, 2, 1, 1, %e A323018 2, 2, 1, 2, 1, %e A323018 2, 2, 1, 2, 1, 1, %e A323018 2, 2, 1, 2, 2, 2, 1, %e A323018 2, 2, 1, 2, 1, 2, 1, 1, %e A323018 2, 2, 1, 2, 2, 1, 2, 2, 1, %e A323018 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, %e A323018 ... %o A323018 (PARI) A316269(k, m) = ([k, -1; 1, 0]^m)[2, 1] %o A323018 T(n, k) = my(i=1); while(A316269(k, i)%n!=0, i++); znorder(Mod(A316269(k, i+1), n)) %Y A323018 Cf. A316269, A321478, A321479. %K A323018 nonn,tabl %O A323018 1,4 %A A323018 _Jianing Song_, Jan 07 2019