cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323023 Irregular triangle read by rows where row n is the omega-sequence of n.

This page as a plain text file.
%I A323023 #4 Jan 02 2019 23:14:39
%S A323023 1,1,2,1,1,2,2,1,1,3,1,2,1,2,2,1,1,3,2,2,1,1,2,2,1,2,2,1,4,1,1,3,2,2,
%T A323023 1,1,3,2,2,1,2,2,1,2,2,1,1,4,2,2,1,2,1,2,2,1,3,1,3,2,2,1,1,3,3,1,1,5,
%U A323023 1,2,2,1,2,2,1,2,2,1,4,2,1,1,2,2,1,2,2
%N A323023 Irregular triangle read by rows where row n is the omega-sequence of n.
%C A323023 We define the omega-sequence of n to have length A323014(n), and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of A181819.
%C A323023 Except for n = 1, all rows end with 1. If n is not prime, the term in row n prior to the last is A304465(n).
%e A323023 The sequence of omega-sequences begins:
%e A323023    1:            26: 2 2 1      51: 2 2 1        76: 3 2 2 1
%e A323023    2: 1          27: 3 1        52: 3 2 2 1      77: 2 2 1
%e A323023    3: 1          28: 3 2 2 1    53: 1            78: 3 3 1
%e A323023    4: 2 1        29: 1          54: 4 2 2 1      79: 1
%e A323023    5: 1          30: 3 3 1      55: 2 2 1        80: 5 2 2 1
%e A323023    6: 2 2 1      31: 1          56: 4 2 2 1      81: 4 1
%e A323023    7: 1          32: 5 1        57: 2 2 1        82: 2 2 1
%e A323023    8: 3 1        33: 2 2 1      58: 2 2 1        83: 1
%e A323023    9: 2 1        34: 2 2 1      59: 1            84: 4 3 2 2 1
%e A323023   10: 2 2 1      35: 2 2 1      60: 4 3 2 2 1    85: 2 2 1
%e A323023   11: 1          36: 4 2 1      61: 1            86: 2 2 1
%e A323023   12: 3 2 2 1    37: 1          62: 2 2 1        87: 2 2 1
%e A323023   13: 1          38: 2 2 1      63: 3 2 2 1      88: 4 2 2 1
%e A323023   14: 2 2 1      39: 2 2 1      64: 6 1          89: 1
%e A323023   15: 2 2 1      40: 4 2 2 1    65: 2 2 1        90: 4 3 2 2 1
%e A323023   16: 4 1        41: 1          66: 3 3 1        91: 2 2 1
%e A323023   17: 1          42: 3 3 1      67: 1            92: 3 2 2 1
%e A323023   18: 3 2 2 1    43: 1          68: 3 2 2 1      93: 2 2 1
%e A323023   19: 1          44: 3 2 2 1    69: 2 2 1        94: 2 2 1
%e A323023   20: 3 2 2 1    45: 3 2 2 1    70: 3 3 1        95: 2 2 1
%e A323023   21: 2 2 1      46: 2 2 1      71: 1            96: 6 2 2 1
%e A323023   22: 2 2 1      47: 1          72: 5 2 2 1      97: 1
%e A323023   23: 1          48: 5 2 2 1    73: 1            98: 3 2 2 1
%e A323023   24: 4 2 2 1    49: 2 1        74: 2 2 1        99: 3 2 2 1
%e A323023   25: 2 1        50: 3 2 2 1    75: 3 2 2 1     100: 4 2 1
%t A323023 red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
%t A323023 omg[n_,k_]:=If[k==1,PrimeOmega[n],omg[red[n],k-1]];
%t A323023 dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]]];
%t A323023 Table[omg[n,k],{n,100},{k,dep[n]}]
%Y A323023 Row lengths are A323014, or A182850 if we assume A182850(2) = 1.
%Y A323023 First column is empty if n = 1 and otherwise A001222(n).
%Y A323023 Second column is empty if n is 1 or prime and otherwise A001221(n).
%Y A323023 Third column is empty if n is 1, prime, or a power of a prime and otherwise A071625(n).
%Y A323023 Cf. A024619, A056239, A067340, A118914, A181819, A181821, A182857, A304464, A304465, A323022.
%K A323023 nonn,tabf
%O A323023 1,3
%A A323023 _Gus Wiseman_, Jan 02 2019