A323034 Where records occur in A321223.
1, 27, 103, 175, 198, 310, 411, 495, 627, 675, 720, 838, 880, 1008, 1014, 1191, 1245, 1296, 1575, 1776, 1911, 1953, 2011, 2136, 2160, 2416, 2502, 2673, 2736, 3015, 3123, 3195, 3270, 3450, 3528, 3600, 3696, 4041, 4248, 4251, 4323, 4356, 4410, 4518, 4531, 4716
Offset: 1
Keywords
Examples
RSCPs of the first 3 terms: a(1) = 1: (1). a(2) = 27: (6,6,6,3,3,3), (6,5,5,5,5,1). a(3) = 103: (13,13,13,10,10,10,7,6,6,6,3,3,3), (13,12,12,12,12,8,7,6,5,5,5,5,1), (13,12,12,10,9,9,9,9,9,4,3,3,1). RSCPs stated in terms of recursive Durfee squares for the first 5 terms: a(1) = 1: {1}. a(2) = 27: {3,3}, {5,1}. a(3) = 103: {7,3,3}, {7,5,1}, {9,3,1}. a(4) = 175: {9,5,3,1}, {11,3,3}, {11,5,1}, {13,1,1}. a(5) = 198: {10,5,2,2}, {10,7}, {12,3,3}, {12,5,1}, {14,1}. a(6) = 310: {12,7,3,2}, {12,9,1}, {14,5,4}, {14,7,2}, {16,3,3}, {16,5,1}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..381
- William J. Keith, Recursively Self-Conjugate Partitions, Integers 11A, (2011) Article 12.
- Michael De Vlieger, Illustration of first 5 terms.
- Michael De Vlieger, Recursively Self-Conjugate Partitions for Numbers in OEIS A323034, 3600 x 2400 pixel PNG file.
- Michael De Vlieger, Plot of terms of A323034 (black) in A321223(n) (color) for n <= 65536.
Programs
-
Mathematica
f[w_] := Block[{k}, k = Total@ w; Total@ Map[Apply[Function[{s, t}, s Array[Boole[t <= # <= s + t - 1] &, k] ], #] &, Apply[Join, Prepend[Table[Function[{v, c}, Map[{w[[k]], # + 1} &, Map[Total[v #] &, Tuples[{0, 1}, {Length@ v}]]]] @@ {Most@ #, ConstantArray[1, Length@ # - 1]} &@ Take[w, k], {k, 2, Length@ w}], {{w[[1]], 1}}]]] ]; g[n_] := Block[{w = {n}, c}, c[x_] := Apply[Times, Most@ x - Reverse@ Accumulate@ Reverse@ Rest@ x]; Reap[Do[Which[And[Length@ w == 2, SameQ @@ w], Sow[w]; Break[], Length@ w == 1, Sow[w]; AppendTo[w, 1], c[w] > 0, Sow[w]; AppendTo[w, 1], True, Sow[w]; w = MapAt[1 + # &, Drop[w, -1], -1] ], {i, Infinity}] ][[-1, 1]] ]; Block[{n = 30, a, s}, a = Merge[Map[<| #1 -> #2 |> & @@ # &, #], Identity] &@ TakeWhile[Sort@ Map[{Total@ #2, #1, #2} & @@ {#, f[#]} &, Apply[Join, Array[g, n]] ], First@ # <= n^2 &][[All, 1 ;; 2]]; s = Array[Length[Lookup[a, #] /. k_ /; MissingQ@ k -> {}] &, Length@ a]; Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]]
Comments