cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323053 Number of integer partitions of n with no 1's such that no part is a power of any other (unequal) part.

This page as a plain text file.
%I A323053 #7 Jan 04 2019 17:31:34
%S A323053 1,0,1,1,2,2,3,4,6,7,9,12,15,19,25,30,38,47,58,71,87,106,131,156,190,
%T A323053 228,275,328,394,468,556,661,784,923,1089,1283,1507,1766,2068,2416,
%U A323053 2821,3284,3822,4438,5148,5961,6898,7968,9195,10593,12198,14019,16102,18472
%N A323053 Number of integer partitions of n with no 1's such that no part is a power of any other (unequal) part.
%e A323053 The a(2) = 1 through a(11) = 12 integer partitions (A = 10, B = 11):
%e A323053   (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)     (A)      (B)
%e A323053             (22)  (32)  (33)   (43)   (44)    (54)    (55)     (65)
%e A323053                         (222)  (52)   (53)    (63)    (64)     (74)
%e A323053                                (322)  (62)    (72)    (73)     (83)
%e A323053                                       (332)   (333)   (433)    (92)
%e A323053                                       (2222)  (522)   (532)    (443)
%e A323053                                               (3222)  (622)    (533)
%e A323053                                                       (3322)   (632)
%e A323053                                                       (22222)  (722)
%e A323053                                                                (3332)
%e A323053                                                                (5222)
%e A323053                                                                (32222)
%t A323053 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A323053 Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]
%Y A323053 Cf. A001597, A002865, A007916, A052410, A101417, A102430, A108917, A305148, A305630, A305631, A321346, A323093.
%K A323053 nonn
%O A323053 0,5
%A A323053 _Gus Wiseman_, Jan 04 2019