cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.

This page as a plain text file.
%I A323055 #24 Apr 16 2025 04:33:55
%S A323055 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,90,
%T A323055 92,96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,144,147,
%U A323055 148,150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189,192,198,200
%N A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.
%C A323055 The first term is A006939(2) = 12.
%C A323055 First differs from A059404 in lacking 360, whose prime signature has three distinct parts.
%C A323055 Positions of 2's in A071625.
%C A323055 Numbers k such that A001221(A181819(k)) = 2.
%C A323055 The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} 1/((n-1)*psi(n)) = 0.3611398..., where psi is the Dedekind psi function (A001615) (Sanna, 2020). - _Amiram Eldar_, Oct 18 2020
%H A323055 Amiram Eldar, <a href="/A323055/b323055.txt">Table of n, a(n) for n = 1..10000</a>
%H A323055 Carlo Sanna, <a href="https://doi.org/10.1007/s12044-020-0556-y">On the number of distinct exponents in the prime factorization of an integer</a>, Proceedings - Mathematical Sciences, Indian Academy of Sciences, Vol. 130, No. 1 (2020), Article 27, <a href="https://www.ias.ac.in/describe/article/pmsc/130/0027">alternative link</a>.
%e A323055 3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
%p A323055 isA323055 := proc(n)
%p A323055     local eset;
%p A323055     eset := {};
%p A323055     for pf in ifactors(n)[2] do
%p A323055         eset := eset union {pf[2]} ;
%p A323055     end do:
%p A323055     simplify(nops(eset) = 2 ) ;
%p A323055 end proc:
%p A323055 for n from 12 to 1000 do
%p A323055     if isA323055(n) then
%p A323055         printf("%d,",n) ;
%p A323055     end if;
%p A323055 end do: # _R. J. Mathar_, Jan 09 2019
%t A323055 Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]
%Y A323055 One distinct exponent: A062770 or A072774.
%Y A323055 Two distinct exponents: this sequence.
%Y A323055 Three distinct exponents: A323024.
%Y A323055 Four distinct exponents: A323025.
%Y A323055 Five distinct exponents: A323056.
%Y A323055 Cf. A001221, A001222, A001615, A006939, A007774, A059404, A071625, A118914, A181819, A323014, A323022.
%K A323055 nonn
%O A323055 1,1
%A A323055 _Gus Wiseman_, Jan 03 2019