This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323056 #18 Feb 17 2019 20:40:29 %S A323056 174636000,206388000,244490400,261954000,269892000,274428000, %T A323056 288943200,291060000,301644000,309582000,343980000,349272000, %U A323056 365148000,366735600,377848800,383292000,404838000,411642000,412776000,422301600,433414800,449820000,452466000,457380000 %N A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature. %C A323056 The first term is A006939(5) = 174636000. %C A323056 Positions of 5's in A071625. %C A323056 Numbers k such that A001221(A181819(k)) = 5. %H A323056 David A. Corneth, <a href="/A323056/b323056.txt">Table of n, a(n) for n = 1..10000</a> %e A323056 174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence. %t A323056 Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&] %o A323056 (PARI) is(n) = #Set(factor(n)[, 2]) == 5 \\ _David A. Corneth_, Jan 12 2019 %Y A323056 One distinct exponent: A062770 or A072774. %Y A323056 Two distinct exponents: A323055. %Y A323056 Three distinct exponents: A323024. %Y A323056 Four distinct exponents: A323025. %Y A323056 Five distinct exponents: A323056. %Y A323056 Cf. A001221, A001222, A006939, A051270, A059404, A071625, A118914, A181819, A182855, A323014, A323022, A323024. %K A323056 nonn %O A323056 1,1 %A A323056 _Gus Wiseman_, Jan 03 2019 %E A323056 a(13)-a(24) from _Daniel Suteu_, Jan 12 2019