This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323065 #58 Jan 22 2019 04:51:43 %S A323065 3,5,7,11,19,41,103,331,1423,8819,86477,1504949,53691233,4703173021, %T A323065 1267699542037,1394588856899951,8916055416478425247 %N A323065 Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^d for n >= 2 starting with c(1) = C. C and d are the real constants given below. %C A323065 C = 3.346835535932430816866371614510056305833213572055338155233562507 %C A323065 and exponent %C A323065 d = 1.251295195638613270470338478487766898374146819139632632235793814. %H A323065 Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019. %e A323065 c(1) = 3.3468, a(1) = 3; c(2) = 4.53390554, a(2) = 5; c(3) = 6.6288905, a(3) = 7; ...; c(n) = c(n-1)^d and a(n) = {c(n)} is the value rounded to the nearest integer. %p A323065 # Computes the values according to the formula, s = 3.34683553..., d = 1.2512951, m the number of terms. Returns the real and the rounded values (primes). %p A323065 val := proc(s, d, m) %p A323065 local ll, v, n; %p A323065 v := s; %p A323065 ll := [v]; %p A323065 for n to m-1 do %p A323065 v := v^d; ll := [op(ll), v] %p A323065 end do; %p A323065 return [ll, map(round, ll)] %p A323065 end: %Y A323065 Cf. A323176. %K A323065 nonn,more %O A323065 1,1 %A A323065 _Simon Plouffe_, Jan 20 2019