cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323088 Number of strict integer partitions of n using numbers that are not perfect powers.

This page as a plain text file.
%I A323088 #9 Mar 06 2019 08:52:10
%S A323088 1,0,1,1,0,2,1,2,2,2,3,3,4,5,5,7,7,9,11,11,15,16,18,22,24,27,32,34,41,
%T A323088 45,51,59,64,75,82,94,105,116,132,146,163,183,202,225,251,277,309,341,
%U A323088 378,417,463,510,564,622,685,754,830,914,1001,1103,1207,1325
%N A323088 Number of strict integer partitions of n using numbers that are not perfect powers.
%F A323088 O.g.f.: Product_{n in A007916} (1 + x^n).
%e A323088 A list of all strict integer partitions using numbers that are not perfect powers begins:
%e A323088    2: (2)        11: (6,3,2)    15: (13,2)       17: (12,5)
%e A323088    3: (3)        12: (12)       15: (12,3)       17: (12,3,2)
%e A323088    5: (5)        12: (10,2)     15: (10,5)       17: (11,6)
%e A323088    5: (3,2)      12: (7,5)      15: (10,3,2)     17: (10,7)
%e A323088    6: (6)        12: (7,3,2)    15: (7,6,2)      17: (10,5,2)
%e A323088    7: (7)        13: (13)       15: (7,5,3)      17: (7,5,3,2)
%e A323088    7: (5,2)      13: (11,2)     16: (14,2)       18: (18)
%e A323088    8: (6,2)      13: (10,3)     16: (13,3)       18: (15,3)
%e A323088    8: (5,3)      13: (7,6)      16: (11,5)       18: (13,5)
%e A323088    9: (7,2)      13: (6,5,2)    16: (11,3,2)     18: (13,3,2)
%e A323088    9: (6,3)      14: (14)       16: (10,6)       18: (12,6)
%e A323088   10: (10)       14: (12,2)     16: (7,6,3)      18: (11,7)
%e A323088   10: (7,3)      14: (11,3)     16: (6,5,3,2)    18: (11,5,2)
%e A323088   10: (5,3,2)    14: (7,5,2)    17: (17)         18: (10,6,2)
%e A323088   11: (11)       14: (6,5,3)    17: (15,2)       18: (10,5,3)
%e A323088   11: (6,5)      15: (15)       17: (14,3)       18: (7,6,5)
%t A323088 perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
%t A323088 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&FreeQ[#,1]&&And@@Not/@perpowQ/@#&]],{n,20}]
%Y A323088 Cf. A001597, A007916, A025147, A052410, A087897, A305631, A321346, A323054, A323089, A323090.
%K A323088 nonn
%O A323088 0,6
%A A323088 _Gus Wiseman_, Jan 04 2019