cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323093 Number of integer partitions of n where no part is 2^k times any other part, for any k > 0.

This page as a plain text file.
%I A323093 #9 Jan 08 2019 16:23:28
%S A323093 1,1,2,2,4,4,6,9,12,13,18,23,29,37,49,55,71,84,104,126,153,185,221,
%T A323093 261,317,375,446,523,623,721,854,994,1168,1357,1579,1833,2126,2455,
%U A323093 2843,3270,3766,4320,4980,5687,6521,7444,8498,9684,11039,12540,14262
%N A323093 Number of integer partitions of n where no part is 2^k times any other part, for any k > 0.
%e A323093 The a(1) = 1 through a(8) = 12 integer partitions:
%e A323093   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A323093        (11)  (111)  (22)    (32)     (33)      (43)       (44)
%e A323093                     (31)    (311)    (51)      (52)       (53)
%e A323093                     (1111)  (11111)  (222)     (61)       (62)
%e A323093                                      (3111)    (322)      (71)
%e A323093                                      (111111)  (331)      (332)
%e A323093                                                (511)      (611)
%e A323093                                                (31111)    (2222)
%e A323093                                                (1111111)  (3311)
%e A323093                                                           (5111)
%e A323093                                                           (311111)
%e A323093                                                           (11111111)
%t A323093 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A323093 Table[Length[Select[IntegerPartitions[n],stableQ[#,IntegerQ[Log[2,#1/#2]]&]&]],{n,30}]
%Y A323093 Cf. A018819, A101417, A120641, A276431, A305148, A323092, A323094.
%K A323093 nonn
%O A323093 0,3
%A A323093 _Gus Wiseman_, Jan 04 2019