This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323159 #6 Jan 09 2019 21:22:38 %S A323159 1,3,4,1,6,12,8,3,2,18,12,4,14,24,24,1,18,6,20,6,32,36,24,12,2,42,4,8, %T A323159 30,72,32,3,48,54,48,2,38,60,56,18,42,96,44,12,12,72,48,4,2,6,72,14, %U A323159 54,12,72,24,80,90,60,24,62,96,16,1,84,144,68,18,96,144,72,6,74,114,8,20,96,168,80,6,2,126,84,32,108,132,120,36,90,36 %N A323159 Greatest common divisor of product (1+(p^e)) and product (1+p), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A048250(n)). %H A323159 Antti Karttunen, <a href="/A323159/b323159.txt">Table of n, a(n) for n = 1..16384</a> %F A323159 a(n) = gcd(A034448(n), A048250(n)). %o A323159 (PARI) %o A323159 A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 %o A323159 A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); %o A323159 A323159(n) = gcd(A034448(n), A048250(n)); %Y A323159 Cf. A034448, A048250, A323160, A323163. %K A323159 nonn %O A323159 1,2 %A A323159 _Antti Karttunen_, Jan 09 2019