cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323166 Greatest common divisor of Product (1+(p_i^e_i)) and n, when n = Product (p_i^e_i); a(n) = gcd(A034448(n), n).

This page as a plain text file.
%I A323166 #9 Jan 09 2019 21:23:00
%S A323166 1,1,1,1,1,6,1,1,1,2,1,4,1,2,3,1,1,6,1,10,1,2,1,12,1,2,1,4,1,6,1,1,3,
%T A323166 2,1,2,1,2,1,2,1,6,1,4,15,2,1,4,1,2,3,2,1,6,1,8,1,2,1,60,1,2,1,1,1,6,
%U A323166 1,2,3,2,1,18,1,2,1,4,1,6,1,2,1,2,1,4,1,2,3,4,1,90,7,4,1,2,5,12,1,2,3,10,1,6,1,2,3
%N A323166 Greatest common divisor of Product (1+(p_i^e_i)) and n, when n = Product (p_i^e_i); a(n) = gcd(A034448(n), n).
%H A323166 Antti Karttunen, <a href="/A323166/b323166.txt">Table of n, a(n) for n = 1..16384</a>
%H A323166 Antti Karttunen, <a href="/A323166/a323166.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F A323166 a(n) = gcd(n, A034448(n)), where A034448 is usigma, the sum of unitary divisors of n.
%o A323166 (PARI)
%o A323166 A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
%o A323166 A323166(n) = gcd(n, A034448(n));
%Y A323166 Cf. A034448, A323160, A323163.
%K A323166 nonn
%O A323166 1,6
%A A323166 _Antti Karttunen_, Jan 09 2019