This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323166 #9 Jan 09 2019 21:23:00 %S A323166 1,1,1,1,1,6,1,1,1,2,1,4,1,2,3,1,1,6,1,10,1,2,1,12,1,2,1,4,1,6,1,1,3, %T A323166 2,1,2,1,2,1,2,1,6,1,4,15,2,1,4,1,2,3,2,1,6,1,8,1,2,1,60,1,2,1,1,1,6, %U A323166 1,2,3,2,1,18,1,2,1,4,1,6,1,2,1,2,1,4,1,2,3,4,1,90,7,4,1,2,5,12,1,2,3,10,1,6,1,2,3 %N A323166 Greatest common divisor of Product (1+(p_i^e_i)) and n, when n = Product (p_i^e_i); a(n) = gcd(A034448(n), n). %H A323166 Antti Karttunen, <a href="/A323166/b323166.txt">Table of n, a(n) for n = 1..16384</a> %H A323166 Antti Karttunen, <a href="/A323166/a323166.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %F A323166 a(n) = gcd(n, A034448(n)), where A034448 is usigma, the sum of unitary divisors of n. %o A323166 (PARI) %o A323166 A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 %o A323166 A323166(n) = gcd(n, A034448(n)); %Y A323166 Cf. A034448, A323160, A323163. %K A323166 nonn %O A323166 1,6 %A A323166 _Antti Karttunen_, Jan 09 2019