This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323176 #27 May 26 2020 18:08:09 %S A323176 113,367,1607,10177,102217,1827697,67201679,6084503671,1699344564793, %T A323176 1940223714629437,12877001925259260821,771380135526168946568519, %U A323176 722912215706743477640066820689,21079337353575904691781436731789131951,45166994522409258021988187061430676460306223027,20822194129240450122637347266336444580153717439156314146339 %N A323176 Prime numbers generated by the formula a(n) = round(c^((5/4)^n)), where c is the real constant given below. %C A323176 The constant c is given in the article [Plouffe, 2018] with 2600 digits of precision. %H A323176 Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019. %H A323176 Simon Plouffe, <a href="https://arxiv.org/abs/2002.12137">The calculation of p(n) and pi(n)</a>, arXiv:2002.12137 [math.NT], 2020. %F A323176 a(n) = round(c^((5/4)^n)), where c is a real constant starting 43.80468771580293481859664562569089495081037087137495184074061328752670419506... %e A323176 a(1) = round(c^((5/4)^1)) = round(112.69...) = 113, %e A323176 a(2) = round(c^((5/4)^2)) = round(367.17...) = 367, %e A323176 a(3) = round(c^((5/4)^3)) = round(1607.2...) = 1607, etc.. %p A323176 # Computes the values according to the formula, v = 43.804..., e = 5/4, m the %p A323176 # number of terms. Returns the real and the rounded values (primes). %p A323176 val := proc(s, e, m) %p A323176 local ll, v, n, kk; %p A323176 v := s; %p A323176 ll := []; %p A323176 for n to m do %p A323176 v := v^e; ll := [op(ll), v] %p A323176 end do; %p A323176 return [ll, map(round, ll)] %p A323176 end; %K A323176 nonn %O A323176 1,1 %A A323176 _Simon Plouffe_, Jan 05 2019