cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323186 a(0) = 0, a'(0) = 0, a''(0) = 1, a''(1) = -1, a(n) = a(n-1) + a'(n), a'(n) = a'(n-1) + a''(n), a''(n) = -a''(n-1) if a(n-2) = 0, or else a''(n-1).

Original entry on oeis.org

0, -1, -1, 0, 2, 3, 3, 2, 0, -3, -5, -6, -6, -5, -3, 0, 4, 7, 9, 10, 10, 9, 7, 4, 0, -5, -9, -12, -14, -15, -15, -14, -12, -9, -5, 0, 6, 11, 15, 18, 20, 21, 21, 20, 18, 15, 11, 6, 0, -7, -13, -18, -22, -25, -27, -28, -28, -27, -25, -22, -18, -13, -7, 0, 8, 15, 21, 26, 30, 33, 35, 36, 36, 35, 33, 30, 26, 21, 15, 8, 0, -9, -17, -24, -30, -35, -39, -42, -44, -45, -45, -44, -42, -39, -35, -30, -24, -17, -9, 0
Offset: 0

Views

Author

Thomas Anton, Jan 06 2019

Keywords

Comments

This sequence might be called the "Bad Driver's Sequence" as it fully "accelerates" or "decelerates" when it changes side of its "speed limit".

Examples

			a''(0) = 1, a'(0) = 0, a(0) = 0.
a''(1) = -1, a'(1) = 0 - 1 = -1, a(1) = 0 - 1 = -1.
a(2-2) = a(0) = 0, so a''(2) = -a''(1) = 1, a'(2) = -1 + 1 = 0, a(2) = -1 + 0 = -1.
		

Crossrefs

Programs

  • Haskell
    a(0) = 0
    a(1) = -1
    a(2) = -1
    a(n) = if a(n-2) == 0 then a(n-1) + a'(n-1) - a''(n-1) else a(n-1) + a'(n-1) + a''(n-1)
    where a'(n) = a(n) - a(n-1)
          a''(n) = a'(n) - a'(n-1)
    
  • Perl
    my @a = (0, -1, -1);
    for my $n (scalar(@a)..1000) {
        if ($a[$n - 2] == 0) {
            $a[$n] = $a[$n - 1] + &as($n - 1) - &ass($n - 1);
        } else {
            $a[$n] = $a[$n - 1] + &as($n - 1) + &ass($n - 1);
        }
        print "$n $a[$n]\n";
    } # for n
    sub as  { my ($n) = @_; return $a[$n]  -  $a[$n - 1]; }
    sub ass { my ($n) = @_; return &as($n) - &as($n - 1); }
    # Georg Fischer, Feb 14 2019

Formula

a'(n) = A053615(n)*(-1)^ceiling((sqrt(4n+1)-1)/2).
a''(n) = (-1)^ceiling(sqrt(n)).
a''(n) changes sign at A002522, a(n) = 0 at A005563.
a(n) has local extrema (with a'(n) = 0) at the oblong numbers A002378 with the value of A000217(n)*(-1)^n, the magnitude of which is the corresponding triangular number, as such |a(n)| <= n/2.

Extensions

a(44) corrected [18, not -18] by Tom Duff, Feb 14 2019