This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323191 #8 Mar 12 2021 22:24:49 %S A323191 1,-1,1,-1,0,-1,1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1, %T A323191 -1,0,-1,1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1,-1,0,-1, %U A323191 1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1,-1,0,-1,1,-1,2,-1,1 %N A323191 Expansion of (1 - x^5) / ((1 + x) * (1 + x^4)) in powers of x. %H A323191 Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rfmc.html">Rational Function Multiplicative Coefficients</a> %H A323191 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,0,-1,-1). %F A323191 a(n) = -b(n) and b() is multiplicative with b(2) = -1, b(4) = 0, b(2^e) = -2 if e>2, b(p^e) = 1 if p>2. %F A323191 Euler transform of length 8 sequence [-1, 1, 0, -1, -1, 0, 0, 1]. %F A323191 Moebius transform is length 8 sequence [-1, 2, 0, -1, 0, 0, 0, 2]. %F A323191 G.f.: (1 - x^5) / ((1 + x) * (1+ x^4)) = -1 + 1 / (1 + x) + 1 / (1 + x^4). %F A323191 a(n) = a(-n) for all n in Z. a(n+4) = a(n-4) except if n=4 or n=-4. %F A323191 a(n) = (-1)^n * A257179(n), a(2*n + 1) = -1, a(4*n + 2) = 1, a(8*n + 4) = 0 for all n in Z. %e A323191 G.f. = 1 - x + x^2 - x^3 - x^5 + x^6 - x^7 + 2*x^8 - x^9 + x^10 + ... %t A323191 a[ n_] := (-1)^n + If[Mod[n, 4] == 0, (-1)^(n/4), 0] - Boole[n == 0]; %t A323191 a[ n_] := {-1, 1, -1, 0, -1, 1, -1, 2}[[Mod[n, 8, 1]]] - Boole[n == 0]; %t A323191 a[ n_] := SeriesCoefficient[ (1 - x^5) / ((1 + x) * (1 + x^4)), {x, 0, Abs@n}]; %o A323191 (PARI) {a(n) = (-1)^n + if(n%4==0, (-1)^(n/4)) - (n==0)}; %o A323191 (PARI) {a(n) = [2, -1, 1, -1, 0, -1, 1, -1][n%8 + 1] - (n==0)}; %o A323191 (PARI) {a(n) = n=abs(n); polcoeff( (1 - x^5) / ((1 + x) * (1 + x^4)) + x * O(x^n), n)}; %o A323191 (PARI) {a(n) = my(e); n=abs(n); if( n<1, n==0, e=valuation(n, 2); -if( e<3, [1, -1, 0][e+1], -2))}; %Y A323191 Cf. A257179. %K A323191 sign,easy %O A323191 0,9 %A A323191 _Michael Somos_, Jan 06 2019