cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323210 a(n) = 9*J(n)^2 where J(n) are the Jacobsthal numbers A001045 with J(0) = 1.

Original entry on oeis.org

1, 9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529, 4198401, 16769025, 67125249, 268402689, 1073807361, 4294836225, 17180131329, 68718952449, 274878955521, 1099509530625, 4398050705409, 17592177655809, 70368760954881, 281474943156225, 1125899973951489
Offset: 0

Views

Author

Peter Luschny, Jan 09 2019

Keywords

Comments

Colin Barker conjectures that A208556 is a shifted version of this sequence.

Crossrefs

Programs

  • Maple
    gf := (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)):
    ser := series(gf,x,32): seq(coeff(ser,x,n), n=0..25);
  • Mathematica
    LinearRecurrence[{3, 6, -8}, {1, 9, 9, 81}, 25]
  • Sage
    # Demonstrates the product formula.
    CC = ComplexField(200)
    def t(n,k): return CC(3)*cos(CC(pi*k/n)) - CC(i)*sin(CC(pi*k/n))
    def T(n,k): return t(n,k)*(t(n,k).conjugate())
    def a(n): return prod(T(n,k) for k in (1..n))
    print([a(n).real().round() for n in (0..29)])

Formula

a(n) = Product_{k=1..n} T(n, k) where T(n, k) = t(n,k)*conjugate(t(n,k)) and t(n,k) = 3*cos(Pi*k/n) - i*sin(Pi*k/n), i is the imaginary unit.
a(n) = [x^n] (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)).
a(n) = n! [x^n] (1 + exp(x) - 2*exp(-2*x) + exp(4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3) for n >= 4.
A062510(n) = sqrt(a(n)) for n > 0.
a(n) = 4^n-2*(-2)^n+1, n>0. - R. J. Mathar, Mar 06 2022