This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323212 #13 Mar 20 2019 11:58:10 %S A323212 1,0,1,0,1,2,0,2,3,3,0,5,7,7,5,0,14,19,19,15,8,0,42,56,56,46,30,13,0, %T A323212 132,174,174,146,103,58,21,0,429,561,561,477,351,220,109,34,0,1430, %U A323212 1859,1859,1595,1205,801,453,201,55,0,4862,6292,6292,5434,4180,2884,1756,908,365,89 %N A323212 The Fibonacci-Catalan Hybrid. Expansion of 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1). Square array read by descending antidiagonals, A(n,k) for n,k >= 0. %e A323212 1, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A323212 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... [A000108] %e A323212 2, 3, 7, 19, 56, 174, 561, 1859, 6292, ... [A005807] %e A323212 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, ... [A005807] %e A323212 5, 15, 46, 146, 477, 1595, 5434, 18798, 65858, ... %e A323212 8, 30, 103, 351, 1205, 4180, 14651, 51844, 185028, ... %e A323212 13, 58, 220, 801, 2884, 10372, 37401, 135420, 492558, ... %e A323212 21, 109, 453, 1756, 6621, 24674, 91532, 339184, 1257762, ... %e A323212 34, 201, 908, 3734, 14719, 56796, 216698, 821848, 3107583, ... %e A323212 55, 365, 1781, 7746, 31872, 127245, 499164, 1937439, 7470819, ... %e A323212 A000045,A023610,... %e A323212 Seen as a triangle a refinement of A000958: %e A323212 [0] 1 %e A323212 [1] 0, 1 %e A323212 [2] 0, 1, 2 %e A323212 [3] 0, 2, 3, 3 %e A323212 [4] 0, 5, 7, 7, 5 %e A323212 [5] 0, 14, 19, 19, 15, 8 %e A323212 [6] 0, 42, 56, 56, 46, 30, 13 %e A323212 [7] 0, 132, 174, 174, 146, 103, 58, 21 %e A323212 [8] 0, 429, 561, 561, 477, 351, 220, 109, 34 %e A323212 [9] 0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55 %p A323212 gf := 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1): %p A323212 serx := series(gf, x, 20): sery := n -> series(coeff(serx, x, n), y, 20): %p A323212 row := n -> seq(coeff(sery(n), y, j), j=0..9): %p A323212 seq(lprint(row(n)), n=0..9); %t A323212 m = 11; T = PadRight[CoefficientList[#+O[y]^m, y], m]& /@ CoefficientList[1 + 2x(x+1)/(Sqrt[1-4y] - 2x(x+1) + 1) + O[x]^m, x]; Table[T[[n-k+1, k]], {n, 1, m}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Mar 20 2019 *) %Y A323212 Antidiagonal sums (or row sums of the triangle) are A000958. %Y A323212 Cf. A000045, A000108, A023610, A005807. %K A323212 nonn,easy,tabl %O A323212 0,6 %A A323212 _Peter Luschny_, Feb 14 2019