A323214 Composite numbers k such that p^(k-1) == 1 (mod k) for every prime p strongly prime to k.
4, 6, 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721
Offset: 1
Keywords
Examples
2, 3 and 5 are not in this sequence because primes are not in this sequence. 4 and 6 are in this sequence because there are no primes strongly prime to 4 respectively 6. For n = 1729 there are 1296 test cases using the definition of A002997 but only 264 test cases using the definition of a(n).
Links
- K. Bouallègue, O. Echi and R. G. E. Pinch, Korselt numbers and sets, International Journal of Number Theory, 6 (2010), 257-269.
- A. Korselt, G. Tarry, I. Franel and G. Vacca, Problème chinois, L'intermédiaire des mathématiciens 6 (1899), 142-144.
- Peter Luschny, Strong Coprimality
- C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Math. Comp., 35 (1980), 1003-1026.
- V. Šimerka, Zbytky z arithmetické posloupnosti, (On the remainders of an arithmetic progression), Časopis pro pěstování matematiky a fysiky. 14 (1885), 221-225.
- L. Wang, The Korselt set of a power of a prime, International Journal of Number Theory, 14 (2018), 233-240.
Programs
-
Julia
using IntegerSequences PrimesPrimeTo(n) = (p for p in Primes(n) if isPrimeTo(p, n)) function isStrongCarmichael(n) if isComposite(n) for k in PrimesPrimeTo(n) if ! Divides(k, n-1) if powermod(k, n-1, n) != 1 return false end end end return true end return false end L323214(len) = [n for n in 1:len if isStrongCarmichael(n)] L323214(30000) |> println
-
Sage
def is_strongCarmichael(n): if n == 1 or is_prime(n): return False for k in (1..n): if is_prime(k) and not k.divides(n-1) and is_primeto(k, n): if power_mod(k, n-1, n) != 1: return false return true def A323214_list(len): return [n for n in (1..len) if is_strongCarmichael(n)] print(A323214_list(600000))
Comments