A323221 a(n) = n*(n + 5)*(n + 7)/6 + 1.
1, 9, 22, 41, 67, 101, 144, 197, 261, 337, 426, 529, 647, 781, 932, 1101, 1289, 1497, 1726, 1977, 2251, 2549, 2872, 3221, 3597, 4001, 4434, 4897, 5391, 5917, 6476, 7069, 7697, 8361, 9062, 9801, 10579, 11397, 12256, 13157, 14101, 15089, 16122, 17201, 18327, 19501
Offset: 0
Examples
For n = 2 the sum formula gives: I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}}; a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.
Links
- P. Hilton and J. Pedersen, Descartes, Euler, Poincaré, Pólya and Polyhedra, L'Enseign. Math., 27 (1981), 327-343.
Programs
-
Maple
a := n -> n*(35 + 12*n + n^2)/6 + 1: seq(a(n), n = 0..45);
-
Mathematica
a[n_] := n (35 + 12 n + n^2)/6 + 1; Table[a[n], {n, 0, 45}]
Formula
Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0
a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).
a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.
a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.
a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.
a(n) = A323224(n, 4).
a(n) = A275874(n+4) + 1.
Comments