cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323222 A(n, k) = [x^k] (1 - 4*x)^(-n/2)*x/(1 - x), square array read by ascending antidiagonals with n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 9, 1, 0, 1, 7, 21, 29, 1, 0, 1, 9, 37, 85, 99, 1, 0, 1, 11, 57, 177, 341, 351, 1, 0, 1, 13, 81, 313, 807, 1365, 1275, 1, 0, 1, 15, 109, 501, 1593, 3579, 5461, 4707, 1, 0, 1, 17, 141, 749, 2811, 7737, 15591, 21845, 17577, 1
Offset: 0

Views

Author

Peter Luschny, Jan 24 2019

Keywords

Comments

General asymptotic formula for g.f. (1 - 4*x)^(-j/2)*x/(1 - x) and fixed j>0 is a(n) ~ n^(j/2 - 1) * 4^n / (3*Gamma(j/2)). - Vaclav Kotesovec, Jan 29 2019

Examples

			[n\k] 0  1   2    3     4      5       6       7        8         9
-------------------------------------------------------------------
[0]   0, 1,  1,   1,    1,     1,      1,      1,       1,        1, ... A057427
[1]   0, 1,  3,   9,   29,    99,    351,   1275,    4707,    17577, ... A006134
[2]   0, 1,  5,  21,   85,   341,   1365,   5461,   21845,    87381, ... A002450
[3]   0, 1,  7,  37,  177,   807,   3579,  15591,   67071,   285861, ... A277178
[4]   0, 1,  9,  57,  313,  1593,   7737,  36409,  167481,   757305, ... A014916
[5]   0, 1, 11,  81,  501,  2811,  14823,  74883,  366603,  1752273, ... A323223
[6]   0, 1, 13, 109,  749,  4589,  26093, 140781,  730605,  3679725, ...
[7]   0, 1, 15, 141, 1065,  7071,  43107, 247311, 1355847,  7175661, ...
[8]   0, 1, 17, 177, 1457, 10417,  67761, 411825, 2377905, 13191345, ...
[9]   0, 1, 19, 217, 1933, 14803, 102319, 656587, 3982195, 23104441, ...
Triangle given by antidiagonals:
0;
0, 1;
0, 1,  1;
0, 1,  3,   1;
0, 1,  5,   9,   1;
0, 1,  7,  21,  29,    1;
0, 1,  9,  37,  85,   99,    1;
0, 1, 11,  57, 177,  341,  351,    1;
0, 1, 13,  81, 313,  807, 1365, 1275,    1;
0, 1, 15, 109, 501, 1593, 3579, 5461, 4707, 1;
		

Crossrefs

Sums of antidiagonals are A323217. Main diagonal is A323219.
Rows: A057427 (n=0), A006134 (n=1), A002450 (n=2), A277178 (n=3), A014916 (n=4), A323223 (n=5).
Columns: A005408 (k=2), A059993 (k=3), A323218 (k=4).
Similar array based on Catalan numbers is A323224.

Programs

  • Maple
    Row := proc(n, len) local ogf, ser; ogf := (1 - 4*x)^(-n/2)*x/(1 - x);
    ser := series(ogf, x, (n+1)*len+1); seq(coeff(ser, x, j), j=0..len) end:
    for n from 0 to 9 do Row(n, 9) od;
  • Mathematica
    BF[N_, K_] := Module[{}, r[n_, k_] := FrobeniusSolve[ConstantArray[1, n], k];
    X[n_] := Flatten[Table[r[N, j], {j, 0, n - 1}], 1];
    CentralBinomial[n_] := Binomial[2 n, n];
    Sum[Product[CentralBinomial[m[[i]]], {i, 1, N}], {m , X[K]}]];
    Trow[n_] := Table[BF[n, k], {k, 0, 9}]; Table[Trow[n], {n, 1, 9}]

Formula

For n>0 and k>0 let X(n, k) denote the set of all tuples of length n with elements from {0, ..., k-1} with sum < k. Let b(m) = binomial(2*m, m). Then A(n, k) = Sum_{(j1,...,jn) in X(n, k)} b(j1)*b(j2)*...*b(jn).