A323225 a(n) = ((2^n*n + i*(1 - i)^n - i*(1 + i)^n))/4, where i is the imaginary unit.
0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, 5648, 12288, 26592, 57280, 122816, 262144, 557184, 1179904, 2490624, 5242880, 11009536, 23067648, 48233472, 100663296, 209717248, 436211712, 905973760, 1879048192, 3892305920, 8053047296, 16642981888, 34359738368
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..3308
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-8).
Programs
-
Maple
a := n -> ((2^n*n + I*(1 - I)^n - I*(1 + I)^n))/4: seq(a(n), n=0..32);
-
Mathematica
LinearRecurrence[{6, -14, 16, -8}, {0, 1, 3, 7}, 40] (* Jean-François Alcover, Mar 20 2019 *) Table[((2^n n + I (1 - I)^n - I (1 + I)^n))/4, {n, 0, 29}] (* Alonso del Arte, Mar 27 2020 *)
Comments