cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323225 a(n) = ((2^n*n + i*(1 - i)^n - i*(1 + i)^n))/4, where i is the imaginary unit.

Original entry on oeis.org

0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, 5648, 12288, 26592, 57280, 122816, 262144, 557184, 1179904, 2490624, 5242880, 11009536, 23067648, 48233472, 100663296, 209717248, 436211712, 905973760, 1879048192, 3892305920, 8053047296, 16642981888, 34359738368
Offset: 0

Views

Author

Peter Luschny, Mar 18 2019

Keywords

Comments

Related to Clifford algebras (see A323100 and A323346).

Crossrefs

Antidiagonal sums of A323346.

Programs

  • Maple
    a := n -> ((2^n*n + I*(1 - I)^n - I*(1 + I)^n))/4:
    seq(a(n), n=0..32);
  • Mathematica
    LinearRecurrence[{6, -14, 16, -8}, {0, 1, 3, 7}, 40] (* Jean-François Alcover, Mar 20 2019 *)
    Table[((2^n n + I (1 - I)^n - I (1 + I)^n))/4, {n, 0, 29}] (* Alonso del Arte, Mar 27 2020 *)

Formula

a(n) = Sum_{k = 0..n} A323346(n - k, k - 1).
a(n) = (A001787(n) + A009545(n))/2.
a(n) = [x^n] (x*(3*x^2 - 3*x + 1))/((2*x - 1)^2*(2*x^2 - 2*x + 1)).
a(n) = n! [x^n] (exp(2*x)*x + exp(x)*sin(x))/2.
a(n) = (4*n*a(n-3) + (2 - 6*n)*a(n-2) + (4*n - 2)*a(n-1))/(n - 1) for n >= 3.