This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323232 #15 Sep 08 2022 08:46:23 %S A323232 1,3,9,51,225,1083,5049,23811,111825,525963,2472489,11625171,54655425, %T A323232 256967643,1208146329,5680180131,26705711025,125558574123, %U A323232 590321410569,2775432824691,13048869758625,61350071873403,288441173689209,1356124096054851,6375901677678225 %N A323232 a(n) = 2^n*J(n, 1/2) where J(n, x) are the Jacobsthal polynomials as defined in A322942. %C A323232 Is it true that p prime and p not 2 or 5 implies that a(p) is squarefree? %H A323232 G. C. Greubel, <a href="/A323232/b323232.txt">Table of n, a(n) for n = 0..1000</a> %H A323232 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,8). %F A323232 a(n) = 3*a(n-1) + 8*a(n-2) for n >= 3. %F A323232 a(n) is an odd integer and 3 | a(n) if n > 0. %F A323232 a(n) = Sum_{k=0..n} 2^(n - k)*A322942(n, k). %F A323232 a(n) = [x^n] (8*x^2 - 1)/(8*x^2 + 3*x - 1). %F A323232 Let s = sqrt(41), u = -1/(s+3) and v = 1/(s-3); then %F A323232 a(n) = (3/s)*16^n*(v^n - u^n) for n >= 1. %F A323232 a(n) = n! [x^n](1 + (6*exp(3*x/2)*sinh(s*x/2))/s). %F A323232 a(n) = n! [x^n](1 + (3/s)*(exp((3 + s)*x/2) - exp((3 - s)*x/2))). %F A323232 a(n)/a(n+1) -> 2/(sqrt(41) + 3) = (sqrt(41) - 3)/16 for n -> oo. %e A323232 The first few prime factorizations of a(n): %e A323232 1| 3; %e A323232 2| 3^2; %e A323232 3| 3 * 17; %e A323232 4| 3^2 * 5^2; %e A323232 5| 3 * 19^2; %e A323232 6| 3^3 * 11 * 17; %e A323232 7| 3 * 7937; %e A323232 8| 3^2 * 5^2 * 7 * 71; %e A323232 9| 3 * 17 * 10313; %e A323232 10| 3^2 * 19^2 * 761; %e A323232 11| 3 * 3875057; %e A323232 12| 3^3 * 5^2 * 11 * 17 * 433; %e A323232 13| 3 * 85655881; %e A323232 14| 3^2 * 13 * 1301 * 7937; %e A323232 15| 3 * 17 * 19^2 * 308521; %e A323232 16| 3^2 * 5^2 * 7 * 71 * 79 * 3023; %e A323232 17| 3 * 67 * 624669523; %e A323232 18| 3^4 * 11 * 17 * 3779 * 10313; %e A323232 19| 3 * 419 * 2207981563; %p A323232 a := proc(n) option remember: %p A323232 if n < 3 then return [1, 3, 9][n+1] fi; %p A323232 8*a(n-2) + 3*a(n-1) end: %p A323232 seq(a(n), n=0..24); %t A323232 LinearRecurrence[{3, 8}, {1, 3, 9}, 25] %o A323232 (Sage) %o A323232 def a(): %o A323232 yield 1 %o A323232 yield 3 %o A323232 c = 3; b = 9 %o A323232 while True: %o A323232 yield b %o A323232 a = (b << 2) + (c << 3) - b %o A323232 c = b %o A323232 b = a %o A323232 A323232 = a() %o A323232 [next(A323232) for _ in range(30)] %o A323232 (Magma) [1] cat [n le 2 select 3^n else 3*Self(n-1) +8*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 27 2021 %Y A323232 Cf. A015525, A322942. %K A323232 nonn,easy %O A323232 0,2 %A A323232 _Peter Luschny_, Jan 07 2019