cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323233 Coefficients of polynomials p(n, x) generating the columns of A323224, triangle read by rows, T(n, k) for n >= 1 and k >= 0.

This page as a plain text file.
%I A323233 #10 Jan 29 2019 04:35:21
%S A323233 1,2,2,6,15,3,24,140,48,4,120,1750,775,110,5,720,28644,14550,2670,210,
%T A323233 6,5040,588588,323008,68775,7105,357,7,40320,14592864,8388800,1962632,
%U A323233 239120,16016,560,8,362880,423227376,250742700,62531532,8502921,680904,32130,828,9
%N A323233 Coefficients of polynomials p(n, x) generating the columns of A323224, triangle read by rows, T(n, k) for n >= 1 and k >= 0.
%F A323233 A323224(n, k) = p(k, n)/k!.
%F A323233 T(n, k) = [x^k] p(n, x).
%F A323233 p(n, 1)/n! and p(n, -1)/n! are versions of the partial sums of the Catalan numbers.
%e A323233 The triangle starts:
%e A323233 [ 1]       1;
%e A323233 [ 2]       2,         2;
%e A323233 [ 3]       6,        15,         3;
%e A323233 [ 4]      24,       140,        48,        4;
%e A323233 [ 5]     120,      1750,       775,      110,       5;
%e A323233 [ 6]     720,     28644,     14550,     2670,     210,      6;
%e A323233 [ 7]    5040,    588588,    323008,    68775,    7105,    357,     7;
%e A323233 [ 8]   40320,  14592864,   8388800,  1962632,  239120,  16016,   560,   8;
%e A323233 [ 9]  362880, 423227376, 250742700, 62531532, 8502921, 680904, 32130, 828, 9;
%e A323233 The first few polynomials are:
%e A323233 p[1](x) = 1;
%e A323233 p[2](x) = 2*x + 2!;
%e A323233 p[3](x) = 3*x*(x + 5) + 3!;
%e A323233 p[4](x) = 4*x*(x + 5)*(x + 7) + 4!;
%e A323233 p[5](x) = 5*x*(x + 5)*(x + 7)*(x + 10) + 5!;
%e A323233 p[6](x) = 6*x*(x + 7)*(x + 11)*(x^2 + 17*x + 62) + 6!;
%e A323233 p[7](x) = 7*x*(x + 6)*(x + 7)*(x + 11)*(x + 13)*(x + 14) + 7!;
%t A323233 ogf[n_] := (2/(1 + Sqrt[1 - 4 x] ))^n  x/(1 - x);
%t A323233 ser[n_, len_] := CoefficientList[Series[ogf[n], {x, 0, (n + 1) len + 1}], x];
%t A323233 tab[k_, len_] := Table[{n, ser[n, k + 1][[k + 1]]}, {n, 0, len - 1}];
%t A323233 pol[n_] := n! InterpolatingPolynomial[tab[n, n + 1], x] // Expand;
%t A323233 row[n_] := CoefficientList[pol[n], x]; Table[row[n], {n, 1, 9}]
%Y A323233 Cf. A323224, A034856, A323221, A323220, A014137, A014138.
%K A323233 nonn,tabl
%O A323233 1,2
%A A323233 _Peter Luschny_, Jan 27 2019