This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323259 #13 Feb 12 2020 14:17:30 %S A323259 0,0,0,1,1,1,2,2,2,3,4,5,5,4,3,3,4,5,6,6,6,7,7,7,8,8,8,8,7,6,6,7,8,8, %T A323259 7,6,5,5,5,4,4,4,3,3,3,2,1,0,0,1,2,2,1,0,0,0,0,1,1,1,2,2,2,3,4,5,5,4, %U A323259 3,3,4,5,6,6,6,7,7,7,8,8,8,9,10,11,11,10 %N A323259 a(n) is the Y-coordinate of the n-th point of the first type of Wunderlich curve (starting at the origin and occupying the first quadrant). %H A323259 Rémy Sigrist, <a href="/A323259/b323259.txt">Table of n, a(n) for n = 1..6561</a> %H A323259 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %o A323259 (PARI) s = [0, 1, 2, 2+I, 1+I, I, 2*I, 1+2*I, 2+2*I]; %o A323259 w = apply(z -> imag(z) + I*real(z), s); %o A323259 r = [0, 1, 0, 3, 2, 3, 0, 1, 0] %o A323259 a(n) = { %o A323259 my (d=if (n>1, Vecrev(digits(n-1, 9)), [0]), z=s[1+d[1]]); %o A323259 for (i=2, #d, %o A323259 my (c=(3^(i-1)-1)/2*(1+I)); %o A323259 z = 3^(i-1) * w[1+d[i]] + c + (z-c) * I^r[1+d[i]]; %o A323259 ); %o A323259 return (imag(z)); %o A323259 } %Y A323259 See A323258 for the X-coordinate and additional comments. %K A323259 nonn %O A323259 1,7 %A A323259 _Rémy Sigrist_, Jan 09 2019