A323271 Numbers of the form p*q*r where p, q, r are distinct primes congruent to 1 mod 4 such that Legendre(p/q) = Legendre(p/r) = Legendre(q/r) = -1.
2405, 3145, 4745, 6205, 6305, 8245, 8905, 9605, 12545, 12805, 14705, 16405, 16745, 17945, 18241, 19045, 19345, 19805, 20213, 20605, 20905, 22945, 23545, 25805, 26605, 26945, 28645, 29705, 30073, 33745, 35705, 35989, 36205, 36305, 37505, 38369, 38545
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366.
Programs
-
Python
from sympy.ntheory import legendre_symbol, factorint A323271_list, k = [], 1 while len(A323271_list) < 10000: fk, fv = zip(*list(factorint(4*k+1).items())) if sum(fv) == len(fk) == 3 and fk[0] % 4 == fk[1] % 4 == fk[2] % 4 == 1 and legendre_symbol(fk[0],fk[1]) == legendre_symbol(fk[0],fk[2]) == legendre_symbol(fk[1],fk[2]) == -1: A323271_list.append(4*k+1) k += 1 # Chai Wah Wu, Jan 11 2019
Comments