A323286 Choix de Bruxelles (version 1): irregular table read by rows in which row n lists all the legal numbers that can be reached by halving or doubling some substring of the decimal expansion of n.
2, 1, 4, 6, 2, 8, 10, 3, 12, 14, 4, 16, 18, 5, 20, 12, 21, 22, 6, 11, 14, 22, 24, 16, 23, 26, 7, 12, 18, 24, 28, 25, 30, 110, 8, 13, 26, 32, 112, 27, 34, 114, 9, 14, 28, 36, 116, 29, 38, 118, 10, 40, 11, 22, 41, 42, 11, 12, 21, 24, 42, 44, 13, 26, 43, 46, 12
Offset: 1
Examples
The triangle begins: 2; 1, 4; 6; 2, 8; 10; 3, 12; 14; 4, 16; 18; 5, 20; 12, 21, 22; 6, 11, 14, 22, 24; 16, 23, 26; 7, 12, 18, 24, 28; 25, 30, 110; 8, 13, 26, 32, 112; 27, 34, 114; 9, 14, 28, 36, 116; 29, 38, 118; 10, 40; 11, 22, 41, 42; 11, 12, 21, 24, 42, 44; ...
References
- Eric Angelini, Email to N. J. A. Sloane, Jan 14 2019.
Links
- Rémy Sigrist, Rows n = 1..2000, flattened
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
- Brady Haran and N. J. A. Sloane, The Brussels Choice, Numberphile video (2020)
- Rémy Sigrist, PARI program for A323286
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
Crossrefs
Programs
-
PARI
See Sigrist link.
-
Python
def cdb(n): s, out = str(n), set() for l in range(1, len(s)+1): for i in range(len(s)+1-l): if s[i] == '0': continue t = int(s[i:i+l]) out.add(int(s[:i] + str(2*t) + s[i+l:])) if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:])) return sorted(out) print([c for n in range(1, 25) for c in cdb(n)]) # Michael S. Branicky, Jul 24 2022
Extensions
Data corrected by Rémy Sigrist, Jan 15 2019
Comments