cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323287 Number of different numbers that can be obtained from (the decimal expansion of) n by one step of the Choix de Bruxelles, version 1 (A323286) operation.

This page as a plain text file.
%I A323287 #33 Jan 09 2025 13:01:42
%S A323287 1,2,1,2,1,2,1,2,1,2,3,5,3,5,3,5,3,5,3,2,4,6,4,6,4,6,4,6,4,2,3,5,3,5,
%T A323287 3,5,3,5,3,2,4,6,4,6,4,6,4,6,4,2,3,5,3,5,3,5,3,5,3,2,4,6,4,6,4,6,4,6,
%U A323287 4,2,3,5,3,5,3,5,3,5,3,2,4,6,4,6,4,6,4
%N A323287 Number of different numbers that can be obtained from (the decimal expansion of) n by one step of the Choix de Bruxelles, version 1 (A323286) operation.
%C A323287 This is the number of terms in row n of the irregular triangle in A323286.
%C A323287 This is one less than the number of different numbers that can be obtained from (the decimal expansion of) n by one step of the Choix de Bruxelles, version 2 (A323460) operation. In other words, this is one less than the number of terms in row n of the irregular triangle in A323460.
%H A323287 Rémy Sigrist, <a href="/A323287/b323287.txt">Table of n, a(n) for n = 1..10000</a>
%H A323287 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
%H A323287 Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy.
%e A323287 From 12 we can reach any of 6, 11, 14, 22, 24, so a(12) = 5.
%o A323287 (PARI) a(n, base=10) = { my (d=digits(n, base), s=Set()); for (w=1, #d, for (l=0, #d-w, if (d[l+1], my (h=d[1..l], m=fromdigits(d[l+1..l+w], base), t=d[l+w+1..#d]); s = setunion(s, Set(fromdigits(concat([h,digits(m*2,base),t]), base))); if (m%2==0, s = setunion(s, Set(fromdigits(concat([h,digits(m/2,base),t]), base))))))); #s } \\ _Rémy Sigrist_, Jan 15 2019
%o A323287 (Python)
%o A323287 def a(n):
%o A323287     s, out = str(n), set()
%o A323287     for l in range(1, len(s)+1):
%o A323287         for i in range(len(s)+1-l):
%o A323287             if s[i] == '0': continue
%o A323287             t = int(s[i:i+l])
%o A323287             out.add(int(s[:i] + str(2*t) + s[i+l:]))
%o A323287             if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
%o A323287     return len(out)
%o A323287 print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Jul 24 2022
%Y A323287 Cf. A323286, A323460.
%K A323287 nonn,base
%O A323287 1,2
%A A323287 _N. J. A. Sloane_, Jan 14 2019
%E A323287 More terms from _Rémy Sigrist_, Jan 15 2019