A323286
Choix de Bruxelles (version 1): irregular table read by rows in which row n lists all the legal numbers that can be reached by halving or doubling some substring of the decimal expansion of n.
Original entry on oeis.org
2, 1, 4, 6, 2, 8, 10, 3, 12, 14, 4, 16, 18, 5, 20, 12, 21, 22, 6, 11, 14, 22, 24, 16, 23, 26, 7, 12, 18, 24, 28, 25, 30, 110, 8, 13, 26, 32, 112, 27, 34, 114, 9, 14, 28, 36, 116, 29, 38, 118, 10, 40, 11, 22, 41, 42, 11, 12, 21, 24, 42, 44, 13, 26, 43, 46, 12
Offset: 1
The triangle begins:
2;
1, 4;
6;
2, 8;
10;
3, 12;
14;
4, 16;
18;
5, 20;
12, 21, 22;
6, 11, 14, 22, 24;
16, 23, 26;
7, 12, 18, 24, 28;
25, 30, 110;
8, 13, 26, 32, 112;
27, 34, 114;
9, 14, 28, 36, 116;
29, 38, 118;
10, 40;
11, 22, 41, 42;
11, 12, 21, 24, 42, 44;
...
- Eric Angelini, Email to N. J. A. Sloane, Jan 14 2019.
- Rémy Sigrist, Rows n = 1..2000, flattened
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
- Brady Haran and N. J. A. Sloane, The Brussels Choice, Numberphile video (2020)
- Rémy Sigrist, PARI program for A323286
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
The number of terms in row n is given by
A323287.
See
A323460 for the (preferred) version 2 where n can also be mapped to itself.
For variants of the Choix de Bruxelles operation, see
A337321 and
A337357.
-
See Sigrist link.
-
def cdb(n):
s, out = str(n), set()
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return sorted(out)
print([c for n in range(1, 25) for c in cdb(n)]) # Michael S. Branicky, Jul 24 2022
A323460
Choix de Bruxelles, version 2: irregular table read by rows in which row n lists all the legal numbers that can be reached by halving or doubling some substring of the decimal expansion of n (including the empty string).
Original entry on oeis.org
1, 2, 1, 2, 4, 3, 6, 2, 4, 8, 5, 10, 3, 6, 12, 7, 14, 4, 8, 16, 9, 18, 5, 10, 20, 11, 12, 21, 22, 6, 11, 12, 14, 22, 24, 13, 16, 23, 26, 7, 12, 14, 18, 24, 28, 15, 25, 30, 110, 8, 13, 16, 26, 32, 112, 17, 27, 34, 114, 9, 14, 18, 28, 36, 116, 19, 29, 38
Offset: 1
Rows 1 through 20 are:
1, 2,
1, 2, 4,
3, 6,
2, 4, 8,
5, 10,
3, 6, 12,
7, 14,
4, 8, 16,
9, 18,
5, 10, 20,
11, 12, 21, 22,
6, 11, 12, 14, 22, 24,
13, 16, 23, 26,
7, 12, 14, 18, 24, 28,
15, 25, 30, 110,
8, 13, 16, 26, 32, 112,
17, 27, 34, 114,
9, 14, 18, 28, 36, 116,
19, 29, 38, 118,
10, 20, 40
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
- Brady Haran and N. J. A. Sloane, The Brussels Choice, Numberphile video (2020)
-
def cdb2(n):
s, out = str(n), {n}
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return sorted(out)
print([c for n in range(1, 21) for c in cdb2(n)]) # Michael S. Branicky, Jul 24 2022
A323289
Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 (A323460) operation at most n times.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 24, 59, 136, 362, 1365, 5992, 28187, 135951, 689058, 3908456, 24849118, 171022869, 1248075797
Offset: 0
After applying Choix de Bruxelles (version 1) twice to 1, we have seen the numbers {1,2,4}, so a(2)=3. After 5 applications, we have seen {1,2,4,8,16,13,26,32,112}, so a(5) = 9.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
-
from itertools import islice
def cdb2(n):
s, out = str(n), {n}
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return out
def agen():
reach, expand = {1}, [1]
while True:
yield len(reach)
newreach = {r for q in expand for r in cdb2(q) if r not in reach}
reach |= newreach
expand = list(newreach)
print(list(islice(agen(), 15))) # Michael S. Branicky, Jul 24 2022
Showing 1-3 of 3 results.
Comments