cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323288 Largest number that can be obtained from the "Choix de Bruxelles", version 2 (A323460) operation applied to n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 110, 112, 114, 116, 118, 40, 42, 44, 46, 48, 210, 212, 214, 216, 218, 60, 62, 64, 66, 68, 310, 312, 314, 316, 318, 80, 82, 84, 86, 88, 410, 412, 414, 416, 418, 100, 102, 104, 106, 108, 510, 512, 514, 516, 518
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2019

Keywords

Comments

Equally, this is the largest number that can be obtained from the "Choix de Bruxelles", version 1 (A323286) operation applied to n.
Maximal element in row n of irregular triangle in A323460 (or, equally, A323286).
Conjecture: If n contains no digit >= 5, then a(n) = 2*n; otherwise, a(n) is obtained from n by doubling the substring from the last digit >= 5 to the last digit. - Charlie Neder, Jan 19 2019. (This is true. - N. J. A. Sloane, Jan 22 2019)
Corollary: a(n)/n < 10 for all n, and a(n) = 10 - 1/k + O(1/k^2) for n = 10*k+5. - N. J. A. Sloane, Jan 23 2019
The high-water marks for a(n)/n occur at n = 1,15,25,35,45,..., cf. A017329. - N. J. A. Sloane, Jan 23 2019

Crossrefs

Programs

  • PARI
    a(n, base=10) = { my (d=digits(n, base), v=2*n); for (w=1, #d, for (l=0, #d-w, if (d[l+1], my (h=d[1..l], m=fromdigits(d[l+1..l+w], base), t=d[l+w+1..#d]); v = max(v, fromdigits(concat([h,digits(m*2,base),t]), base))))); v } \\ Rémy Sigrist, Jan 15 2019
    
  • Python
    def a(n):
        s, out = str(n), {n}
        for l in range(1, len(s)+1):
            for i in range(len(s)+1-l):
                if s[i] == '0': continue
                t = int(s[i:i+l])
                out.add(int(s[:i] + str(2*t) + s[i+l:]))
                if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
        return max(out)
    print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jul 24 2022

Formula

a(n) >= 2*n. - Rémy Sigrist, Jan 15 2019

Extensions

More terms from Rémy Sigrist, Jan 15 2019