A323289 Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 (A323460) operation at most n times.
1, 2, 3, 4, 5, 9, 24, 59, 136, 362, 1365, 5992, 28187, 135951, 689058, 3908456, 24849118, 171022869, 1248075797
Offset: 0
Examples
After applying Choix de Bruxelles (version 1) twice to 1, we have seen the numbers {1,2,4}, so a(2)=3. After 5 applications, we have seen {1,2,4,8,16,13,26,32,112}, so a(5) = 9.
Links
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
- Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
Programs
-
Python
from itertools import islice def cdb2(n): s, out = str(n), {n} for l in range(1, len(s)+1): for i in range(len(s)+1-l): if s[i] == '0': continue t = int(s[i:i+l]) out.add(int(s[:i] + str(2*t) + s[i+l:])) if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:])) return out def agen(): reach, expand = {1}, [1] while True: yield len(reach) newreach = {r for q in expand for r in cdb2(q) if r not in reach} reach |= newreach expand = list(newreach) print(list(islice(agen(), 15))) # Michael S. Branicky, Jul 24 2022
Extensions
a(7)-a(16) from Rémy Sigrist, Jan 15 2019
Deleted an incorrect comment. - N. J. A. Sloane, Jan 24 2019
a(17) from Michael S. Branicky, Jul 24 2022
a(18) from Michael S. Branicky, Jul 26 2022
Comments