This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323300 #5 Jan 12 2019 20:43:11 %S A323300 1,1,1,2,1,4,1,2,2,4,1,6,1,4,4,3,1,6,1,6,4,4,1,12,2,4,2,6,1,12,1,2,4, %T A323300 4,4,18,1,4,4,12,1,12,1,6,6,4,1,10,2,6,4,6,1,12,4,12,4,4,1,36,1,4,6,4, %U A323300 4,12,1,6,4,12,1,20,1,4,6,6,4,12,1,10,3,4 %N A323300 Number of ways to fill a matrix with the parts of the integer partition with Heinz number n. %C A323300 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %F A323300 a(n) = A008480(n) * A000005(A001222(n)). %e A323300 The a(24) = 12 matrices whose entries are (2,1,1,1): %e A323300 [1 1 1 2] [1 1 2 1] [1 2 1 1] [2 1 1 1] %e A323300 . %e A323300 [1 1] [1 1] [1 2] [2 1] %e A323300 [1 2] [2 1] [1 1] [1 1] %e A323300 . %e A323300 [1] [1] [1] [2] %e A323300 [1] [1] [2] [1] %e A323300 [1] [2] [1] [1] %e A323300 [2] [1] [1] [1] %t A323300 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A323300 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A323300 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; %t A323300 Array[Length[ptnmats[#]]&,100] %Y A323300 Positions of 1's are one and prime numbers A008578. %Y A323300 Positions of 2's are primes to prime powers A053810. %Y A323300 Cf. A000005, A001222, A008480, A056239, A063989, A112798, A120733. %Y A323300 Cf. A323295, A323305, A323307, A323351. %K A323300 nonn %O A323300 1,4 %A A323300 _Gus Wiseman_, Jan 12 2019