cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323302 Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums.

This page as a plain text file.
%I A323302 #4 Jan 13 2019 08:50:28
%S A323302 1,1,1,2,1,0,1,2,2,0,1,0,1,0,0,3,1,0,1,0,0,0,1,0,2,0,2,0,1,0,1,2,0,0,
%T A323302 0,2,1,0,0,0,1,0,1,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,1,0,1,0,0,4,0,0,1,0,
%U A323302 0,0,1,0,1,0,0,0,0,0,1,0,3,0,1,0,0,0,0
%N A323302 Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums.
%C A323302 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%e A323302 The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1):
%e A323302   [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
%e A323302   [3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3]
%e A323302 .
%e A323302   [1 3] [1 3] [2 2] [2 2] [3 1] [3 1]
%e A323302   [2 2] [3 1] [1 3] [3 1] [1 3] [2 2]
%e A323302   [3 1] [2 2] [3 1] [1 3] [2 2] [1 3]
%t A323302 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A323302 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A323302 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
%t A323302 Table[Length[Select[ptnmats[n],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{n,100}]
%Y A323302 Positions of zeros are a superset of A106543.
%Y A323302 Cf. A000005, A001222, A006052, A007016, A008480, A056239, A112798, A120733, A319056, A321719, A321721.
%Y A323302 Cf. A323300, A323303, A323305, A323306, A323347, A323349.
%K A323302 nonn
%O A323302 1,4
%A A323302 _Gus Wiseman_, Jan 13 2019