This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323302 #4 Jan 13 2019 08:50:28 %S A323302 1,1,1,2,1,0,1,2,2,0,1,0,1,0,0,3,1,0,1,0,0,0,1,0,2,0,2,0,1,0,1,2,0,0, %T A323302 0,2,1,0,0,0,1,0,1,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,1,0,1,0,0,4,0,0,1,0, %U A323302 0,0,1,0,1,0,0,0,0,0,1,0,3,0,1,0,0,0,0 %N A323302 Number of ways to arrange the parts of the integer partition with Heinz number n into a matrix with equal row-sums and equal column-sums. %C A323302 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A323302 The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1): %e A323302 [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1] %e A323302 [3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3] %e A323302 . %e A323302 [1 3] [1 3] [2 2] [2 2] [3 1] [3 1] %e A323302 [2 2] [3 1] [1 3] [3 1] [1 3] [2 2] %e A323302 [3 1] [2 2] [3 1] [1 3] [2 2] [1 3] %t A323302 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A323302 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A323302 ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; %t A323302 Table[Length[Select[ptnmats[n],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{n,100}] %Y A323302 Positions of zeros are a superset of A106543. %Y A323302 Cf. A000005, A001222, A006052, A007016, A008480, A056239, A112798, A120733, A319056, A321719, A321721. %Y A323302 Cf. A323300, A323303, A323305, A323306, A323347, A323349. %K A323302 nonn %O A323302 1,4 %A A323302 _Gus Wiseman_, Jan 13 2019