A323303 Number of ways to arrange the prime indices of n into a matrix with equal column-sums.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 6, 1, 2, 2, 2, 2, 10, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 12, 1, 2, 3, 4, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 3, 3, 2, 6, 1, 5, 3, 2, 1, 12, 2, 2
Offset: 1
Keywords
Examples
The a(90) = 16 matrix-arrangements of (3,2,2,1) with equal column-sums: [1 2] [2 1] [2 3] [3 2] [3 2] [2 3] [2 1] [1 2] . [1] [1] [1] [2] [2] [2] [2] [2] [2] [3] [3] [3] [2] [2] [3] [1] [1] [2] [2] [3] [3] [1] [2] [2] [2] [3] [2] [2] [3] [1] [3] [1] [2] [2] [1] [2] [3] [2] [2] [3] [2] [3] [1] [2] [1] [2] [2] [1]
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; Table[Length[Select[ptnmats[n],SameQ@@Total/@Transpose[#]&]],{n,100}]
Comments