A323307 Number of ways to fill a matrix with the parts of a multiset whose multiplicities are the prime indices of n.
1, 1, 2, 4, 2, 6, 3, 12, 18, 12, 2, 36, 4, 10, 20, 72, 2, 60, 4, 40, 60, 24, 3, 120, 80, 14, 360, 120, 4, 240, 2, 240, 42, 32, 70, 720, 6, 27, 112, 480, 2, 210, 4, 84, 420, 40, 4, 1440, 280, 280, 108, 224, 5, 1260, 224, 420, 180, 22, 2, 840, 6, 72, 1680, 2880
Offset: 1
Keywords
Examples
The a(22) = 24 matrices: [111112] [111121] [111211] [112111] [121111] [211111] . [111] [111] [111] [112] [121] [211] [112] [121] [211] [111] [111] [111] . [11] [11] [11] [11] [12] [21] [11] [11] [12] [21] [11] [11] [12] [21] [11] [11] [11] [11] . [1] [1] [1] [1] [1] [2] [1] [1] [1] [1] [2] [1] [1] [1] [1] [2] [1] [1] [1] [1] [2] [1] [1] [1] [1] [2] [1] [1] [1] [1] [2] [1] [1] [1] [1] [1]
Links
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Array[Length[ptnmats[Times@@Prime/@nrmptn[#]]]&,30]
Comments