cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323308 The number of exponential semiproper divisors of n.

This page as a plain text file.
%I A323308 #56 Oct 03 2023 13:14:08
%S A323308 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1,
%T A323308 1,4,1,1,1,2,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,1,1,2,
%U A323308 1,1,1,4,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1
%N A323308 The number of exponential semiproper divisors of n.
%C A323308 An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and gcd(d/rad(n), n/d) = 1, where rad(n) is the largest squarefree divisor of n (A007947).
%C A323308 a(n) is also the number of divisors of n that are squares of squarefree numbers (A062503). - _Amiram Eldar_, Oct 08 2022
%C A323308 a(n) is also the number of unitary divisors of n that are powerful (A001694). - _Amiram Eldar_, Feb 18 2023
%C A323308 The smallest integer that has exactly 2^n exponential semiproper divisors is A061742(n). - _Bernard Schott_, Feb 20 2023
%H A323308 Amiram Eldar, <a href="/A323308/b323308.txt">Table of n, a(n) for n = 1..10000</a>
%H A323308 Nicusor Minculete, <a href="http://rs.unitbv.ro/BU2013/2014/Series_III/BULETIN%20III%20PDF/4.Minculete-MOD.pdf">A new class of divisors: the exponential semiproper divisors</a>, Bulletin of the Transilvania University of Brasov, Mathematics, Informatics, Physics, Series III, Vol. 7, No. 1 (2014), pp. 37-46.
%H A323308 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%H A323308 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>.
%F A323308 a(n) = A034444(n/A007947(n)).
%F A323308 Multiplicative with a(p^e) = 1 for e = 1 and 2 otherwise.
%F A323308 Asymptotic mean: Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 15/Pi^2 = 1.5198177546... (A082020). - _Amiram Eldar_, Nov 08 2020
%F A323308 a(n) = Sum_{d^2|n} mu(d)^2. - _Wesley Ivan Hurt_, Feb 13 2022
%F A323308 Dirichlet g.f.: zeta(s) * zeta(2*s) / zeta(4*s). - _Werner Schulte_, Dec 29 2022
%F A323308 a(n) = A034444(A000188(n)) = A034444(A008833(n)) (the number of unitary divisors of the largest square dividing n). - _Amiram Eldar_, Sep 03 2023
%F A323308 a(n) = A034444(A057521(n)) (the number of unitary divisors of the powerful part of n). - _Amiram Eldar_, Oct 03 2023
%t A323308 f[p_, e_] := If[e==1, 1, 2]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A323308 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = min(f[k,2], 2); f[k,2] = 1); factorback(f); \\ _Michel Marcus_, Jan 11 2019
%Y A323308 Cf. A000188, A001694, A007947, A008833, A034444, A057521, A061742, A062503, A082020, A323309, A323310.
%K A323308 nonn,easy,mult
%O A323308 1,4
%A A323308 _Amiram Eldar_, Jan 10 2019