cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323319 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 17*x*A(x) )^n * 8^n / 9^(n+1).

This page as a plain text file.
%I A323319 #5 Jan 10 2019 22:19:29
%S A323319 1,152,87760,85439240,113151839104,186152435786240,362548564958149696,
%T A323319 811847325733606058048,2049967057729258844550208,
%U A323319 5756221555712461523954507264,17785396518936498493080842349568,59963943179536216027803213130483712,219093913413498532617018883655015864320,862506026576114820987041351988191302565888,3640101913203153345185251232178995247004487680,16397805545827151302219567488776238270687543337472
%N A323319 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 17*x*A(x) )^n * 8^n / 9^(n+1).
%F A323319 G.f. A(x) satisfies the following identities.
%F A323319 (1) 1 = Sum_{n>=0} ( (1+x)^n - 17*x*A(x) )^n * 8^n / 9^(n+1).
%F A323319 (2) 1 = Sum_{n>=0} (1+x)^(n^2) * 8^n / (9 + 136*x*A(x)*(1+x)^n)^(n+1).
%e A323319 G.f.: A(x) = 1 + 152*x + 87760*x^2 + 85439240*x^3 + 113151839104*x^4 + 186152435786240*x^5 + 362548564958149696*x^6 + 811847325733606058048*x^7 + ...
%e A323319 such that
%e A323319 1 = 1/9 + ((1+x) - 17*x*A(x))*8/9^2 + ((1+x)^2 - 17*x*A(x))^2*8^2/9^3 + ((1+x)^3 - 17*x*A(x))^3*8^3/9^4 + ((1+x)^4 - 17*x*A(x))^4*8^4/9^5 + ...
%e A323319 Also,
%e A323319 1 = 1/(9 + 136*x*A(x)) + (1+x)*8/(9 + 136*x*A(x)*(1+x))^2 + (1+x)^4*8^2/(9 + 136*x*A(x)*(1+x)^2)^3 + (1+x)^9*8^3/(9 + 136*x*A(x)*(1+x)^3)^4 + ...
%o A323319 (PARI) \p120
%o A323319 {A=vector(1); A[1]=1; for(i=1,20, A = concat(A,0);
%o A323319 A[#A] = round( Vec( sum(n=0, 2200, ( (1+x +x*O(x^#A))^n - 17*x*Ser(A) )^n * 8^n/9^(n+1)*1.)/136 ) )[#A+1]); A}
%Y A323319 Cf. A301435, A303288, A323314, A323315, A323316, A323317, A323318, A323320, A323321.
%K A323319 nonn
%O A323319 0,2
%A A323319 _Paul D. Hanna_, Jan 10 2019