This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A323320 #5 Jan 10 2019 22:22:01 %S A323320 1,189,136341,165866949,274513563621,564389814803319, %T A323320 1373687351977035681,3844220718032111632869, %U A323320 12130905677234774784280281,42569255610714760893622565829,164374338314267349285576891426201,692583662656534583930262265650693159,3162450027762781275258550249673787013761,15558457725978409248029649314240444710279749,82059484588450416190385956503916602281112899421 %N A323320 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 19*x*A(x) )^n * 9^n / 10^(n+1). %F A323320 G.f. A(x) satisfies the following identities. %F A323320 (1) 1 = Sum_{n>=0} ( (1+x)^n - 19*x*A(x) )^n * 9^n / 10^(n+1). %F A323320 (2) 1 = Sum_{n>=0} (1+x)^(n^2) * 9^n / (10 + 171*x*A(x)*(1+x)^n)^(n+1). %e A323320 G.f.: A(x) = 1 + 189*x + 136341*x^2 + 165866949*x^3 + 274513563621*x^4 + 564389814803319*x^5 + 1373687351977035681*x^6 + 3844220718032111632869*x^7 + ... %e A323320 such that %e A323320 1 = 1/10 + ((1+x) - 19*x*A(x))*9/10^2 + ((1+x)^2 - 19*x*A(x))^2*9^2/10^3 + ((1+x)^3 - 19*x*A(x))^3*9^3/10^4 + ((1+x)^4 - 19*x*A(x))^4*9^4/10^5 + ... %e A323320 Also, %e A323320 1 = 1/(10 + 171*x*A(x)) + (1+x)*9/(10 + 171*x*A(x)*(1+x))^2 + (1+x)^4*9^2/(10 + 171*x*A(x)*(1+x)^2)^3 + (1+x)^9*9^3/(10 + 171*x*A(x)*(1+x)^3)^4 + ... %o A323320 (PARI) \p120 %o A323320 {A=vector(1); A[1]=1; for(i=1,20, A = concat(A,0); %o A323320 A[#A] = round( Vec( sum(n=0, 2400, ( (1+x +x*O(x^#A))^n - 19*x*Ser(A) )^n * 9^n/10^(n+1)*1.)/171 ) )[#A+1]); A} %Y A323320 Cf. A301435, A303288, A323314, A323315, A323316, A323317, A323318, A323319, A323321. %K A323320 nonn %O A323320 0,2 %A A323320 _Paul D. Hanna_, Jan 10 2019