A323327 Numbers that start an unbounded aliquot-like sequence based on Dedekind psi function (A001615).
318, 330, 498, 510, 534, 546, 636, 660, 786, 798, 942, 954, 978, 990, 996, 1020, 1068, 1092, 1110, 1122, 1254, 1272, 1320, 1398, 1410, 1470, 1494, 1506, 1518, 1530, 1572, 1596, 1602, 1614, 1626, 1638, 1734, 1884, 1908, 1938, 1950, 1956, 1980, 1992, 2040, 2046
Offset: 1
Keywords
Examples
318 is in the sequence since t(318) = psi(318) - 318 = 330, t(330) = 534, etc., and this repeated mapping yields an unbounded sequence.
References
- Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318.
Links
- Kevin Brown and Charles Vanden Eynden, Pseudo-aliquot Sequences, Solution to Problem 10323, The American Mathematical Monthly, Volume 103, No. 8 (1996), pp. 697-698.
- David E. Penney and Carl Pomerance, Problem 10323, The American Mathematical Monthly, Volume 100, No. 7 (1993), p. 688.
- Eric Weisstein's World of Mathematics, Aliquot Sequence.
- Wikipedia, Aliquot sequence.
Programs
-
Mathematica
t[1]=0; t[n_] := (Times@@(1+1/Transpose[FactorInteger[n]][[1]])-1)*n; rt[n_] := Module[{f=FactorInteger[n]}, e=GCD@@f[[;;,2]]; Surd[n,e]]; divrootQ[n_, m_] := Divisible[n, rt[m]]; divQ[s_, n_] := If[n==0, 0, If[MemberQ[s, n], 1, If[ Length[Select[s, Divisible[n,#] && divrootQ[#, n/#] &]] > 0, 2, 3]]]; seqQ[n_] := Module[{n1=n}, s={}; While[divQ[s, n1] ==3, AppendTo[s, n1]; n1=t[n1]]; divQ[s, n1]] == 2; Select[Range[10000], seqQ]
Comments